Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (10): 1911-1918    DOI: 10.3785/j.issn.1008-973X.2018.10.010
Civil Engineering     
Analytical solution and experimental verification of pullout force of twisted steel fibers in ultra-high performance concrete
YE Ju-dong, YANG Zhen-jun, LIU Guo-hua, YAO Yong
College of Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download:   PDF(1467KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The pullout force-displacement curves during the whole process were obtained by conducting pullout tests with a single fiber with different embedment length in order to analyze the damage mechanism of twisted steel fiber reinforced ultra-high performance concrete (UHPC). The micro X-ray computed tomography (XCT) scanning was conducted to analyze the deformation of the UHPC matrix before and after the fiber was pulled out. The test results show that the pullout curves can be simplified as a trilinear model consisting of an approximatively linear stage, a plastic "untwisting" stage and a sudden dropping stage. The micro-XCT images showed no evident damage in the fiber-UHPC channel after the fiber was pulled out, revealing the untwisting plasticity deformation mechanism special to the twisted steel fiber reinforced UHPC. The untwisting pullout force was independent of fibre embedment length as long as it was longer than an effective untwisting length. A simplified analytical solution for the untwisting pullout force was derived for fibres of rectangular section based on the experimental results and the plasticity theory. The solution agreed well with the experimental results.



Received: 11 September 2017      Published: 11 October 2018
CLC:  TU111  
Cite this article:

YE Ju-dong, YANG Zhen-jun, LIU Guo-hua, YAO Yong. Analytical solution and experimental verification of pullout force of twisted steel fibers in ultra-high performance concrete. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1911-1918.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.10.010     OR     http://www.zjujournals.com/eng/Y2018/V52/I10/1911


超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证

为了研究螺旋钢纤维增强超高性能混凝土(UHPC)的破坏力学机理,开展不同埋长的纤维单根拉拔实验,得到拉拔力-位移全过程曲线,采用微观X光断层扫描(XCT)对拉拔前、后的基体变形进行观测.实验结果显示,矩形截面螺旋钢纤维拉拔过程分为近似线性脱黏段、塑性解螺旋段和骤降段,可以简化为三折线;XCT图像显示拉拔前、后UHPC基体通道未见明显破坏,揭示了螺旋钢纤维单根拉拔过程的“解螺旋”塑性变形机理;只要纤维埋长大于有效解螺旋长度,则解螺旋段的拉拔力与埋长无关.基于以上实验现象和塑性力学理论,推导了矩形截面钢纤维解螺旋拉拔力的简化解析解公式,与实验结果吻合良好.

[1] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[2] WANG C, YANG C, LIU F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cement and Concrete Composites, 2012, 34(4):538-544.
[3] ZHANG Y, SUN W, LIU S, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cement and Concrete Composites, 2008, 30(9):831-838.
[4] HABEL K, VIVIANI M, DENARIÉ E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2006, 36(7):1362-1370.
[5] 王卫仑, 唐信, 柯玉伟, 等. 120MPa纤维超高强混凝土抗硫酸盐及氯离子侵蚀性能研究[J]. 混凝土, 2016(10):5-7 WANG Wei-lun, TANG Xin, KE Yu-wei, et al. 120 MPa fiber ultra high strength concrete exposure to sulfate and chloride invading environment[J]. Concrete, 2016(10):5-7
[6] GU C, SUN W, GUO L, et al. Effect of curing conditions on the durability of ultra-high performance concrete under flexural load[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2016, 31(2):278.
[7] 赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之一:钢-混凝土复合模式的现状, 问题及对策与UHPC发展历程[J]. 混凝土世界, 2013(10):56-69 ZHAO Yun, LIAN Hui-zhen, JIN Jian-chang. Steel-concrete composite new model-ultra-high performance concrete (UHPC/UHPFRC):the present situation, problems and countermeasures of steel-concrete composite model and the development of UHPC[J]. Concrete, 2013(10):56-69
[8] 吴香国, 徐世烺, 吴明喜. 超高性能纤维改性混凝土断裂参数研究与应用[J]. 工程力学, 2009(3):93-98 WU Xiang-guo, XU Shi-lang, WU Ming-xi. Fracture parameters study and application of ultra high performance fiber reinforcement concrete[J]. Engineering Mechanics, 2009(3):93-98
[9] HABEL K, GAUVREAU P. Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading[J]. Cement and Concrete Composites, 2008, 30(10):938-946.
[10] LIU J, WU C, CHEN X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration[J]. Construction and Building Materials, 2017, 135:447-458.
[11] FANG Q, ZHANG J. Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading[J]. Construction and Building Materials, 2013, 44(7):118-132.
[12] NAAMAN A E, NAJM H. Bond-slip mechanisms of steel fibers in concrete[J]. Materials Journal, 1991, 88(2):135-145.
[13] 李建辉, 邓宗才. 异型塑钢纤维-砂浆界面粘结性能[J]. 混凝土与水泥制品, 2005(2):38-40 LI Jian-hui, DENG Zong-cai. The interface bonding property of the deformed steel fiber-mortar[J]. China Concrete and Cement Products, 2005(2):38-40
[14] 程俊, 刘加平, 张丽辉. 超高性能混凝土纤维-基体黏结性能测试与机理分析[J]. 混凝土与水泥制品, 2016(5):62-66 CHENG Jun, LIU Jia-ping, ZHANG Li-hui. Performance test and mechanism analysis of fiber-matrix bonding in an UHPC[J]. China Concrete and Cement Products, 2016(5):62-66
[15] NAAMAN A E. Engineered steel fibers with optimal properties for reinforcement of cement composites[J]. Journal of Advanced Concrete Technology, 2003, 1(3):241-252.
[16] KIM D J, EL-TAWIL S, NAAMAN A E. Loading rate effect on pullout behavior of deformed steel fibers[J]. ACI Materials Journal, 2008, 105(6):576-584.
[17] LEE Y, KANG S T, KIM J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Construction and Building Materials, 2010, 24(10):2030-2041.
[18] 赵燕茹, 邢永明, 黄建永, 等. 数字图像相关方法在纤维混凝土拉拔试验中的应用[J]. 工程力学, 2010, 27(6):169-175 ZHAO Yan-ru, XING Yong-ming, HUANG Jian-yong, et al. Study on the fiber-reinforced concrete pull-out test using digital image correlation method[J]. Engineering Mechanics, 2010, 27(6):169-175
[19] 朋改非, 牛旭婧, 赵怡琳. 异刑钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016, 19(6):1013-1018 PENG Gai-fei, NIU Xu-jing, ZHAO Yi-lin. Effect of deformed steel fiber on strengthening and toughening of ultra-high performance concrete[J]. Journal of Buiding Materials, 2016, 19(6):1013-1018
[20] QSYMAH A, SHARMA R, YANG Z, et al. Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete[J]. Construction and Building Materials, 2017, 130:230-240.
[21] 中国工程建设标准化协会.钢纤维混凝土试验方法:CECS13:89[S]. 北京:中国计划出版社, 1989:30-35.
[22] WILLE K, NAAMAN A E. Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete[J]. ACI Materials Journal, 2012, 109(4):479-487.
[23] 夏志皋. 塑性力学[M]. 上海:同济大学出版社, 1991:131-132.
[24] BALTAY P, GJELSVIK A. Coefficient of friction for steel on concrete at high normal stress[J]. Journal of Materials in Civil Engineering, 1990, 2(1):46-49.

[1] TANG Wei-yu, CHEN Jing-xiang, HAN Jin-cheng, HE Yan, LI Wei, LIU Zhi-chun. Comparison of flow boiling heat transfer characteristics inside different enhanced heat transfer tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1216-1222.
[2] ZHOU Jia-li, CHEN Yi-jun, WU Min. Image acquisition and preprocessing method based on FPGA monitor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 398-405.
[3] WU Xin-zhong, XING Qiang, CHEN Ming, CHENG Jiang-yang, YANG Chun-yu. Power quality disturbance detection method using improved complementary ensemble empirical mode decomposition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1834-1843.
[4] DING Zhi, HONG Qi-hao, WEI Xin-jiang, ZHANG Meng-ya, ZHENG Yong. Experimental study on micro-structure of artificial freezing and thawing soft soil under subway train load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1291-1299.