Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1031-1039    DOI: 10.3785/j.issn.1008-973X.2019.06.002
Civil and St ructural Engineering     
Influences of pavement irregularity on ground vibrations generated by moving traffic load
Yao CHEN1,2(),Yuan-qiang CAI1,3,Zhi-gang CAO1,*(),Hai-jiang WANG4
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hang zhou 310014, China
3. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
4. Shaoxing Keqiao District Traffic Engineering Quality and Safety Supervision Station, Shaoxing 312030, China
Download: HTML     PDF(1535KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A traffic load-uneven pavement-double-layered ground coupling model was established in order to study the influences of pavement irregularity on the vibrations of layered ground generated by moving traffic load. The upper and lower soil layers were simulated as elastic medium and a fully saturated poroelastic half-space governed by Biot’s theory, respectively. The pavement was simplified as a Kirchhoff thin plate, and the road surface irregularities were simulated by sine curves. The wheel-road dynamic loading was obtained through the linear Hertizian contact model. The governing equations of this coupling model were solved by the Fourier transform and the time-domain results were obtained by applying the inverse fast Fourier transform (IFFT). Numerical results show that the influence of wheel-pavement dynamic loading caused by pavement irregularity on the vibration of layered foundations cannot be ignored. When the shear modulus of the upper soil was small, the acceleration of the ground surface caused by the dynamic loading was greater than that caused by the axle load, which is the main factor that causes the ground surface vibration response. As the shear modulus of the upper soil layer increased, the vibration caused by the dynamic loading decreased, but it is still non-negligible. In addition, the dynamic loading is the main factor that causes the excess pore water pressure response in the lower saturated soil layer.



Key wordslayered ground      pavement irregularity      traffic load      ground vibration      Biot’s theory     
Received: 16 May 2018      Published: 22 May 2019
CLC:  TU 435  
Corresponding Authors: Zhi-gang CAO     E-mail: cy12@zju.edu.cn;caozhigang2011@zju.edu.cn
Cite this article:

Yao CHEN,Yuan-qiang CAI,Zhi-gang CAO,Hai-jiang WANG. Influences of pavement irregularity on ground vibrations generated by moving traffic load. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1031-1039.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1031


不平顺路面对交通荷载引起的地基振动影响

为研究不平顺路面对交通荷载引起的成层地基振动的影响,建立交通荷载-不平顺路面-双层地基耦合模型,分别采用单相弹性介质理论与Biot饱和两相介质理论模拟地基上、下层土体,采用Kirchhoff薄板理论模拟路面系统,采用正弦曲线模拟不平顺路面;通过线性Hertzian接触模型得到不平顺路面引发的车轮-路面动力荷载. 采用Fourier变换求解系统控制方程,通过快速Fourier逆变换(IFFT)求得时域结果. 数值研究结果表明,不平顺路面引发的车轮-路面动力荷载对成层地基振动响应的影响不容忽视. 当上层土体模量较小时,动力荷载引起的地表加速度大于轴重荷载引起的加速度,是引起地表振动响应的主要因素;随着上层土体模量增大,动力荷载引起的振动相对减小,但仍不可忽略. 此外,动力荷载是引起下卧饱和土地基超静孔压响应的主要因素.


关键词: 成层地基,  不平顺路面,  交通荷载,  地基振动,  Biot波动理论 
Fig.1 Traffic load-uneven pavement-double-layered ground coupling model
车辆整体参数 车轮与转向架参数
${W_t}/{\rm{kN}}$ $d/{\rm{m}}$ $\begin{gathered} {l_{\rm{f}}} \times {b_{\rm{f}}}/ \left( {{\rm{m}} \times {\rm{m}}} \right) \end{gathered} $ $\begin{gathered} {l_{\rm{r}}} \times {b_{\rm{r}}}/ \left( {{\rm{m}} \times {\rm{m}}} \right) \end{gathered} $ ${{k_1}/({\rm{N}} \cdot {{\rm{m}}^{{\rm{ - 1}}}})}$ ${k_2}/({\rm{N}} \cdot {{\rm{m}}^{{\rm{ - 1}}}})$ ${c_1}/({\rm{N}} \cdot {\rm{s}} \cdot {{\rm{m}}^{{\rm{ - 1}}}})$ ${c_2}/({\rm{N}} \cdot {\rm{s}} \cdot {{\rm{m}}^{{\rm{ - 1}}}})$
404.36 4.15 0.32×0.22 0.50×0.35 2 060 000 370 000 900 600
Tab.1 Parameters for traffic load in traffic load-uneven pavement-double-layered ground coupling model
弹性土体参数 饱和土体参数
${\mu _{\rm{e}}}/({\rm{N}} \cdot {{\rm{m}}^{{\rm{ - 2}}}})$ ${h_{\rm{e}}}/{\rm{m}}$ ${\rho _{\rm{e}}}/({\rm{kg}} \cdot {{\rm{m}}^{ - 3}})$ ${\nu _{\rm{p}}}$ $\mu /({\rm{N}} \cdot {{\rm{m}}^{{\rm{ - 2}}}})$ ${\rho _{\rm{s}}}/({\rm{kg}} \cdot {{\rm{m}}^{ - 3}})$ $n$ $\nu $ $M/({\rm{N}} \cdot {{\rm{m}}^{{\rm{ - 2}}}}{\rm{) }}$ $b/({\rm{kg}} \cdot {{\rm{s}}^{ - 1}} \cdot {{\rm{m}}^{ - 1}})$
1×106~1×108 2 1 089.6 0.35 1×107 1816 0.4 0.35 1.2×108 1.22×106
Tab.2 Parameters for ground soil layers in traffic load-uneven pavement-double-layered ground coupling model
Fig.2 Comparisons of soil vertical normal stress and shear stress between present work and existing work
Fig.3 Changes of wheel-pavement dynamic loading against excitation frequency.
Fig.4 Time-history curves for vertical acceleration of subsoil at position of $y = z = 0$
Fig.5 Changes of subsoil vertical acceleration responses against ground depths
Fig.6 Change for vertical acceleration responses of surface subsoil against ratio of shear modulus of upper and lower soil
Fig.7 Time-history curves for vertical stress of subsoil at position of $y = z = 0$
Fig.8 Changes of subsoil vertical stress responses against ground depths
Fig.9 Changes for vertical stress responses of surface subsoil against ratio of shear modulus of upper and lower soil
Fig.10 Changes of excess pore water pressure responses of saturated subsoil against ground depths
Fig.11 Changes of excess pore water pressure of the subsoil at depth of 2.5 m against ratio of shear modulus of upper and lower soil
[1]   SNEDDON I The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid[J]. Rendiconti del Circolo Matematico di Palermo, 1952, 1 (1): 57- 62
doi: 10.1007/BF02843720
[2]   SNEDDON I. Fourier transforms[M]. New York: McGraw-Hills, 1951.
[3]   EASON G The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science, 1965, 2 (6): 581- 609
doi: 10.1016/0020-7225(65)90038-8
[4]   BIOT M Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33 (4): 1482- 1498
doi: 10.1063/1.1728759
[5]   BIOT M Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range[J]. Journal of the Acoustical Society of America, 1956, 28 (2): 168- 178
doi: 10.1121/1.1908239
[6]   SIDDHARTHAN R, ZAFIR Z, NORRIS G Moving load response of layered soil. I: Formulation; Ⅱ: Verification and application[J]. Journal of Engineering Mechanics, 1993, 119: 2052- 2089
doi: 10.1061/(ASCE)0733-9399(1993)119:10(2052)
[7]   CAI Y Q, SUN H L, XU C J Steady state responses of poroelastic half-space soil medium to a moving rectangular load[J]. International Journal of Solids and Structures, 2007, 44 (22): 7183- 7196
[8]   蔡袁强, 孙宏磊, 徐长节 移动荷载下上覆弹性板饱和地基的动力响应[J]. 计算力学学报, 2008, 25 (2): 156- 161
CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie Response of beams on poroelastic half-space soil medium to moving load[J]. Chinese Journal of Computational Mechanics, 2008, 25 (2): 156- 161
[9]   CAI Y Q, CAO Z G, SUN H L, et al Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load[J]. Computers and Geotechnics, 2009, 36 (1): 52- 60
[10]   曹志刚, 蔡袁强, 徐长节 移动车辆荷载作用下路面的动力响应[J]. 浙江大学学报: 工学版, 2009, 43 (4): 777- 781
CAO Zhi-gang, CAI Yuan-qiang, XU Chang-jie Dynamic response of pavement subjected to moving traffic load[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (4): 777- 781
[11]   AI Z, MU J, REN G 3D dynamic response of a transversely isotropic multilayered medium subjected to a moving load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42 (4): 636- 654
doi: 10.1002/nag.v42.4
[12]   FENG S, LI Y, CHEN Z, et al Three‐dimensional dynamic response of ground with a poroviscoelastic interlayer to a harmonic moving rectangular load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41 (7): 1055- 1076
doi: 10.1002/nag.v41.7
[13]   CAI Y, CHEN Y, CAO Z, et al Dynamic responses of a saturated poroelastic half-space generated by a moving truck on the uneven pavement[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 172- 181
doi: 10.1016/j.soildyn.2014.10.014
[14]   LIU B, SU Q, LIU T, et al Dynamic response of water saturated subgrade surface layer under high speed train using moving element method[J]. Journal of Vibroengineering, 2017, 19 (5): 3720- 3736
doi: 10.21595/jve.2017.18187
[15]   QIAN J, ZHOU R, CHEN S, et al Influence of pavement roughness on dynamic stresses in saturated subsoil subjected to moving traffic loading[J]. International Journal of Geomechanics, 2018, 18 (4): 4018012
doi: 10.1061/(ASCE)GM.1943-5622.0001097
[16]   KIM S, MCCULLOUGH B Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude[J]. Engineering Structures, 2003, 25: 1179- 1188
doi: 10.1016/S0141-0296(03)00066-X
[17]   SUN H, CAI Y, XU C Three‐dimensional steady‐state response of a railway system on layered half‐space soil medium subjected to a moving train[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33 (4): 529- 550
doi: 10.1002/nag.v33:4
[18]   HENCHI K, FAFARD M, TALBOT M, et al An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach[J]. Journal of Sound and Vibration, 1998, 212 (4): 663- 683
doi: 10.1006/jsvi.1997.1459
[19]   HESS D, SOOM A Normal vibrations and friction under harmonic loads: Part I—Hertzian contacts[J]. Journal of Tribology, 1991, 113 (1): 80- 86
doi: 10.1115/1.2920607
[20]   CAO Z, CAI Y, SUN H, et al Dynamic responses of a poroelastic half-space from moving trains caused by vertical track irregularities[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (7): 761- 786
doi: 10.1002/nag.v35.7
[21]   LEFEUVE-MESGOUEZ G, PEPLOW A, LE HOUéDEC D Surface vibration due to a sequence of high speed moving harmonic rectangular loads[J]. Soil Dynamics and Earthquake Engineering, 2002, 22 (6): 459- 473
doi: 10.1016/S0267-7261(02)00034-9
[22]   王解军, 张伟, 吴卫祥 重型汽车荷载作用下简支梁桥的动力反应分析[J]. 中南公路工程, 2005, 30 (2): 55- 57
WANG Jie-jun, ZHANG Wei, WU Wei-xiang Analysis of dynamic responses of simply supported girder bridge under heavy moving vehicles[J]. Central South Highway Engineering, 2005, 30 (2): 55- 57
doi: 10.3969/j.issn.1674-0610.2005.02.016
[1] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1976-1982.
[2] HU An-feng,SUN Bo,XIE Kang-he,JIA Yu-shuai. An analysis of cumulative settlement of soft soil under traffic loading[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1939-1944.
[3] LIU Meng-Cheng, SHU Hong-Zhou. Computational procedure for longterm settlement of
layered medium under cyclic dynamic loads
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1919-1924.