Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2290-2302    DOI: 10.3785/j.issn.1008-973X.2022.11.020
    
Ultimate bearing capacity of shield segment structures considering ovality imperfection
Zhen WANG1,2(),Zhi DING1,2,*(),Xiao ZHANG3,Qi-hui ZHOU4,Cheng-quan ZHANG5
1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China
2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
4. Power China Huadong Engineering Co. Ltd., Hangzhou 311122, China
5. Zhejiang Institute of Communications, Hangzhou 311112, China
Download: HTML     PDF(2480KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A calculation method of nonlinear stability ultimate bearing capacity for shield segments considering the initial ovality imperfection was proposed to study the influence of initial ovality imperfection on the ultimate bearing capacity of segment lining structure under the external confining pressure. A numerical model was established and verified by the literature experimental data. The geometric calculation theory of ovality imperfection and its value method were analyzed. By introducing the initial ovality imperfections of horizontal long axis and oblique long axis, parameter analysis was carried out to study the effects of different ovality imperfections on the nonlinear stability ultimate loading for shield segments. A method of nonlinear stability ultimate loading for segments with ovality imperfections was put forward. Analysis shows that the initial ovality imperfection has the adverse effect to nonlinear stability ultimate loading for segments and the adverse effect increases by the increase of defect amplitude. For the case of different ovality imperfections, the loading factor increases rapidly, increases gently and tends to converge with the increase of displacement. The variational trend of ultimate loading factor with different ovality imperfections of transverse long axis is summarized. Taking the soil lateral pressure coefficient 0.6 as the critical value, the variational trend experiences slow and rapid increase. Taking the soil resistance coefficient 5.0 MN/m3 as the critical value, the variational trend experiences rapid increase and slow increase. Taking the bending stiffness of the joint 50.0 MN·m/rad as the critical value, the variational trend increases rapidly and tends to be stable. For the case of different ovality imperfections, as the inclined angle increases, the ultimate loading factor improves and the absolute value for corresponding error percentage decreases. The ovality imperfection of transverse long axis is the worst adverse condition. In practical engineering, the reduction coefficient of nonlinear ultimate bearing capacity of segments with ovality imperfection could be considered as 0.85~0.90. The ultimate bearing capacity of the actual lining segment can be approximately solved according to the integral segment considering the reduction coefficient of 0.85.



Key wordsovality imperfection      shield segment      ultimate bearing capacity      double nonlinearity      reduction coefficient     
Received: 24 November 2021      Published: 02 December 2022
CLC:  U 451  
  TU 43  
Fund:  浙江省重点研发计划资助项目(2020C01102);浙江省自然科学基金联合基金重点资助项目(LHZ20E080001);杭州市农业与社会发展科研资助项目(202203B39);浙江省交通运输厅科技计划资助项目(822110KY05)
Corresponding Authors: Zhi DING     E-mail: wzjggc@163.com;dingz@zucc.edu.cn
Cite this article:

Zhen WANG,Zhi DING,Xiao ZHANG,Qi-hui ZHOU,Cheng-quan ZHANG. Ultimate bearing capacity of shield segment structures considering ovality imperfection. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2290-2302.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.020     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2290


考虑椭圆度缺陷的盾构管片结构极限承载性能研究

为了探究初始椭圆度缺陷对于管片结构在外部围压下极限承载性能的影响,提出考虑初始椭圆度缺陷的管片非线性稳定极限承载性能计算方法. 建立数值分析模型并基于文献实验数据验证,对椭圆度缺陷的几何计算理论及其取值进行分析;分别引入横长轴和斜长轴初始椭圆度缺陷,就不同椭圆度缺陷对管片非线性稳定极限承载力的影响进行参数分析;提出含椭圆度缺陷管片极限稳定承载力的取值建议. 结果表明,初始椭圆度缺陷对管片非线性极限承载力均为不利作用,且缺陷越大,不利越明显. 当不同椭圆度缺陷时,荷载系数随位移的变化均为迅速增大、平缓增大和趋于收敛. 当不同横长轴椭圆度缺陷时,极限荷载系数的变化趋势为:以土体侧压力系数0.6为界,经历缓慢增大、迅速增大;以土体抗力系数5.0 MN/m3为界,经历迅速增大、缓慢增大;以接头抗弯刚度50.0 MN·m/rad为界,经历迅速增大、趋于平稳. 对于不同椭圆度缺陷,随着倾斜角的增大,极限荷载系数逐渐增大,对应误差百分比绝对值逐渐减小,横长轴椭圆度缺陷为最不利工况. 在实际工程中含椭圆度缺陷管片的非线性极限承载力相对无缺陷时的折减系数可按0.85~0.90考虑,而按整体式管片近似求解实际衬砌式管片时的极限荷载系数可按折减系数0.85考虑.


关键词: 椭圆度缺陷,  盾构管片,  极限承载力,  双重非线性,  折减系数 
Fig.1 Segment structure and computational model
Fig.2 Hongnestad material constitutive model
Fig.3 External confining pressure loading mode of segment
土体 N $ \lambda $ k/(MN·m?3)
极软黏土 [0, 2] [0.65, 0.75] [0, 1.0]
软黏土 [2, 4] [0.55, 0.65] [1.0, 5.0]
中硬黏土 [4, 8] [0.45, 0.55] [5.0, 10.0]
Tab.1 Soil lateral pressure coefficient and soil resistance coefficient[16]
Fig.4 Finite element analysis model of confining pressure sbearing for segment
土体 $ \lambda $ k /(MN·m?3) Δ /mm
有限元模型 试验模型
极软黏土 0.7 1.0 128.0 80.0~120.0
软黏土 0.6 2.5 95.0
中硬黏土 0.5 5.0 67.0
Tab.2 Comparison of limit displacements between finite element model and test model
Fig.5 Finite element model and test model of segment[16]
n α n α
1 24.663 6 83.973
2 34.193 7 85.491
3 39.705 8 115.360
4 52.653 9 115.510
5 58.892 10 120.350
Tab.3 First 10 order linear limit load factors
Fig.6 Linear buckling mode deformation of segment
Fig.7 Segment elliptic imperfection form
Fig.8 Elliptic imperfection geometry of whole segment
Fig.9 Segment model with elliptic imperfection (deformation magnified 15 times)
Fig.10 External confining pressure load factor-vertical displacement of top central node curves for segment
Fig.11 Error percentage of external confining pressure load factor-vertical displacement of top central node curves for segment
Fig.12 Slope of external confining pressure load factor-vertical displacement of top central node curves for segment
Fig.13 External confining pressure ultimate load factor-lateral pressure coefficient of soil curves for segment
Fig.14 Error percentage of external confining pressure ultimate load factor-lateral pressure coefficient of soil curves for segment
Fig.15 External confining pressure ultimate load factor-soil resistance coefficient curves for segment
Fig.16 Error percentage of external confining pressure ultimate load factor-soil resistance coefficient curves for segment
Fig.17 External confining pressure ultimate load factor-bending stiffness of joint curves for segment
Fig.18 Error percentage of external confining pressure ultimate load factor-bending stiffness of joint curves for segment
Fig.19 External confining pressure ultimate load factor-vertical displacement of top central node curves for intergral segment
Fig.20 Comparison of external confining pressure ultimate load factor-elliptic imperfection amplitude curves for intergral and lining segments
Fig.21 Comparison of error percentage of external confining pressure ultimate load factor-elliptic imperfection amplitude curves for intergral and lining segments
椭圆度缺陷w (‰) α0
φ1 φ2 φ2/φ1
0 3.99 3.46 0.84~0.86
5 3.94 3.41
10 3.90 3.36
20 3.81 3.27
30 3.73 3.19
Tab.4 Comparison of external confining pressure ultimate load factor and error percentage for intergral and lining segments
椭圆度缺陷w (‰) 误差百分比/%
(φ1?φ10)/φ10 φ1/φ10 (φ2?φ20)/φ20 φ2/φ20
0 0 0.935~1.000 0 0.922~1.000
5 ?1.89 ?1.37
10 ?2.39 ?2.73
20 ?4.41 ?5.32
30 ?6.52 ?7.80
Tab.4 
Fig.22 Comparison of external confining pressure ultimate load factor-inclination angle of major axis curves for segment
Fig.23 Comparison of error percentage of external confining pressure ultimate load factor-inclination angle of major axis curves for segment
[1]   陈湘生, 李克, 包小华, 等 城市盾构隧道数字化智能建造发展概述[J]. 应用基础与工程科学学报, 2021, 29 (5): 1057- 1074
CHEN Xiang-sheng, LI Ke, BAO Xiao-hua, et al Innovations in the development of digital and intelligent construction of urban shield tunnels[J]. Journal of Basic Science and Engineering, 2021, 29 (5): 1057- 1074
[2]   何川, 封坤, 方勇 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50 (1): 97- 109
HE Chuan, FENG Kun, FANG Yong Review and pospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50 (1): 97- 109
doi: 10.3969/j.issn.0258-2724.2015.01.015
[3]   黄大维, 周顺华, 赖国泉, 等 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39 (7): 1173- 1181
HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, et al Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (7): 1173- 1181
doi: 10.11779/CJGE201707002
[4]   杨雨冰, 谢雄耀 基于断裂力学的盾构隧道管片结构开裂破损机制探讨[J]. 岩石力学与工程学报, 2015, 34 (10): 2114- 2124
YANG Yu-bing, XIE Xiong-yao Breaking mechanism of segmented lining in shield tunnel based on fracture mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2114- 2124
doi: 10.13722/j.cnki.jrme.2015.1003
[5]   郭文琦, 封坤, 苏昂, 等 围压对错缝拼装管片衬砌结构力学性能的影响[J]. 中国公路学报, 2021, 34 (11): 200- 210
GUO Wen-qi, FENG Kun, SU Ang, et al The influence of confining pressure on the mechanical properties of staggered assembling segment lining structure[J]. China Journal of Highway and Transport, 2021, 34 (11): 200- 210
[6]   黄伟明, 王金昌, 徐日庆, 等 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报: 工学版, 2020, 54 (4): 787- 795
HUANG Wei-ming, WANG Jin-chang, XU Ri-qing, et al Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 787- 795
[7]   DO N A, DIAS D, ORESTE P, et al A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 38 (15): 1617- 1632
[8]   LEE K M, HOU X Y, GE X W, et al An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25 (4): 365- 390
doi: 10.1002/nag.134
[9]   刘洪清, 刘华北 盾构隧道管片及纵向接头力学性能数值模拟研究[J]. 地下空间与工程学报, 2019, 15 (6): 1800- 1810
LIU Hong-qing, LIU Hua-bei Numerical investigation on the mechanical behavior of shield tunnel segment and their longitudinal joint[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (6): 1800- 1810
[10]   汪亦显, 单生彪, 袁海平, 等 盾构隧道衬砌管片接头张合状态力学模型及数值模拟[J]. 建筑结构学报, 2017, 38 (5): 158- 166
WANG Yi-xian, SHAN Sheng-biao, YUAN Hai-ping, et al Mechanical model and numerical simulation for patulous-occlusive situation of joint of shield tunnel lining segment[J]. Journal of Building Structures, 2017, 38 (5): 158- 166
[11]   ZHOU J M, HE C, FENG K, et al Model test on structural behaviour of underwater shield tunnel with large cross-section considering assembling modes[J]. Advanced Materials Research, 2011, 243-249: 3560- 3564
doi: 10.4028/www.scientific.net/AMR.243-249.3560
[12]   张力, 封坤, 何川, 等 盾构隧道管片接头破坏特征及损伤特性试验研究[J]. 土木工程学报, 2021, 54 (5): 98- 107
ZHANG Li, FENG Kun, HE Chuan, et al Experimental study on failure behaviors and damage characteristics of segmental joints of shield tunnels[J]. China Civil Engineering Journal, 2021, 54 (5): 98- 107
[13]   巩一凡, 丁文其, 龚琛杰, 等 大断面类矩形盾构隧道管片接头极限抗剪切承载力试验研究[J]. 土木工程学报, 2019, 52 (11): 120- 128
GONG Yi-fan, DING Wen-qi, GONG Chen-jie, et al Experimental study on the ultimate shear bearing capacity of segment joint in shield tunnel with large quasi-rectangular cross-section[J]. China Civil Engineering Journal, 2019, 52 (11): 120- 128
[14]   李守巨, 李雨陶, 上官子昌 混凝土管片极限承载力计算模型及其模拟分析[J]. 中国矿业大学学报, 2017, 46 (2): 397- 403
LI Shou-ju, LI Yu-tao, SHANGGUAN Zi-chang Computational models and numerical simulations for ultimate bearing capacity of concrete segments[J]. Journal of China University of Mining and Technology, 2017, 46 (2): 397- 403
[15]   李守巨, 王志云, 杜洪泽 混凝土管片接头极限承载力特性的实验[J]. 黑龙江科技大学学报, 2020, 30 (2): 219- 224
LI Shou-ju, WANG Zhi-yun, DU Hong-ze Experimental study on characteristics behind ultimate bearing capacity of concrete segment joints[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30 (2): 219- 224
doi: 10.3969/j.issn.2095-7262.2020.02.019
[16]   郭瑞, 何川 盾构隧道管片衬砌结构稳定性研究[J]. 中国公路学报, 2015, 28 (6): 74- 81
GUO Rui, HE Chuan Study on stability of segment lining structure for shield tunnel[J]. China Journal of Highway and Transport, 2015, 28 (6): 74- 81
doi: 10.3969/j.issn.1001-7372.2015.06.011
[17]   柳献, 赵子蓬, 叶宇航, 等 类矩形盾构隧道结构极限承载力分析[J]. 同济大学学报:自然科学版, 2020, 48 (9): 1283- 1295
LIU Xian, ZHAO Zi-peng, YE Yu-hang, et al Ultimate bearing capacity analysis of quasi-rectangular shield tunnel structure[J]. Journal of Tongji University: Natural Science, 2020, 48 (9): 1283- 1295
[18]   丁智, 张霄, 周联英, 等 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1943- 1953,1979
DING Zhi, ZHANG Xiao, ZHOU Lian-ying, et al Research and prospect of interaction between close bridge pile and metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1943- 1953,1979
[19]   魏新江, 张默爆, 丁智, 等 盾构穿越对既有地铁隧道影响研究现状与展望[J]. 岩土力学, 2020, 41 (S2): 442- 461
WEI Xin-jiang, ZHANG Mo-bao, DING Zhi, et al Research status and prospect of shield tunneling on preexisting metro tunnels[J]. Rock and Soil Mechanics, 2020, 41 (S2): 442- 461
[20]   苏昂, 王士民, 何川, 等 复合地层盾构隧道管片施工病害特征及成因分析[J]. 岩土工程学报, 2019, 41 (4): 683- 692
SU Ang, WANG Shi-min, HE Chuan, et al Disease characteristics and causes analysis of segments of shield tunnels in composite stratum during construction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (4): 683- 692
[21]   LI X J, LIN X D, ZHU H H, et al Condition assessment of shield tunnel using a new indicator: the tunnel serviceability index[J]. Tunnelling and Underground Space Technology, 2017, 67 (8): 98- 106
[22]   GB 50446—2017. 盾构法隧道施工及验收规范[S]. 北京: 中国建筑工业出版社, 2017: 38-40.
[23]   DING Z, ZHANG X, YIN X S, et al Analysis of the influence of soft soil grouting on the metro tunnel based on field measurement[J]. Engineering Computations, 2019, 36 (5): 1522- 1541
doi: 10.1108/EC-08-2018-0350
[24]   董飞, 房倩, 张顶立, 等 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50 (6): 104- 113
DONG Fei, FANG Qian, ZHANG Ding-li, et al Analysis on defects of operational metro tunnels in beijing[J]. China Civil Engineering Journal, 2017, 50 (6): 104- 113
doi: 10.15951/j.tmgcxb.2017.06.012
[25]   刘德军, 仲飞, 黄宏伟, 等. 运营隧道衬砌病害诊治的现状与发展[J/OL]. 中国公路学报. https://kns.cnki.net/ kcms/detail/61.1313.U.20201116.1543.004.html.
LIU De-jun, ZHONG Fei, HUANG Hong-wei, et al. Present status and development trend of diagnosis and treatment of tunnel lining diseases [J/OL]. China Journal of Highway and Transport. https://kns.cnki.net/kcms/detail/61.1313.U.20201116.1543.004.html.
[26]   王新敏. ANSYS工程结构数值分析[M]. 北京: 人民交通出版社, 2007: 479-487.
[27]   小泉淳主编. 官林星翻译. 盾构隧道管片设计—从容许应力设计法到极限状态设计法[M]. 北京: 中国建筑工业出版社, 2011: 17-32.
[28]   DB33/T 1096-2014. 建筑基坑工程技术规程[S]. 杭州: 浙江工商大学出版社, 2014.
[29]   DB33/T 1112-2015. 建筑基坑工程逆作法技术规程[S]. 北京: 中国计划出版社, 2015.
[30]   郭兵. 结构稳定理论与设计[M]. 北京: 中国建筑工业出版社, 2018: 232-296.
[1] FAN Sheng-gang, ZHANG Sui-han, MENG Chang. Experimental investigation on mechanical properties of austenitic stainless steel with elevated temperature cooling[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2348-2354.
[2] HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1221-1229.
[3] WANG Qiong, DENG Hua. Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1889-1895.
[4] DANG Hua-Bo, GONG Shun-Feng, JIN Wei-Liang, LI Zhi-Gang, DIAO Dong-Yan, HE Ning. Analysis on ultimate bearing capacity of deepwater submarine pipe[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 778-782.