1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China 2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China 3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 4. Power China Huadong Engineering Co. Ltd., Hangzhou 311122, China 5. Zhejiang Institute of Communications, Hangzhou 311112, China
A calculation method of nonlinear stability ultimate bearing capacity for shield segments considering the initial ovality imperfection was proposed to study the influence of initial ovality imperfection on the ultimate bearing capacity of segment lining structure under the external confining pressure. A numerical model was established and verified by the literature experimental data. The geometric calculation theory of ovality imperfection and its value method were analyzed. By introducing the initial ovality imperfections of horizontal long axis and oblique long axis, parameter analysis was carried out to study the effects of different ovality imperfections on the nonlinear stability ultimate loading for shield segments. A method of nonlinear stability ultimate loading for segments with ovality imperfections was put forward. Analysis shows that the initial ovality imperfection has the adverse effect to nonlinear stability ultimate loading for segments and the adverse effect increases by the increase of defect amplitude. For the case of different ovality imperfections, the loading factor increases rapidly, increases gently and tends to converge with the increase of displacement. The variational trend of ultimate loading factor with different ovality imperfections of transverse long axis is summarized. Taking the soil lateral pressure coefficient 0.6 as the critical value, the variational trend experiences slow and rapid increase. Taking the soil resistance coefficient 5.0 MN/m3 as the critical value, the variational trend experiences rapid increase and slow increase. Taking the bending stiffness of the joint 50.0 MN·m/rad as the critical value, the variational trend increases rapidly and tends to be stable. For the case of different ovality imperfections, as the inclined angle increases, the ultimate loading factor improves and the absolute value for corresponding error percentage decreases. The ovality imperfection of transverse long axis is the worst adverse condition. In practical engineering, the reduction coefficient of nonlinear ultimate bearing capacity of segments with ovality imperfection could be considered as 0.85~0.90. The ultimate bearing capacity of the actual lining segment can be approximately solved according to the integral segment considering the reduction coefficient of 0.85.
Fig.16Error percentage of external confining pressure ultimate load factor-soil resistance coefficient curves for segment
Fig.17External confining pressure ultimate load factor-bending stiffness of joint curves for segment
Fig.18Error percentage of external confining pressure ultimate load factor-bending stiffness of joint curves for segment
Fig.19External confining pressure ultimate load factor-vertical displacement of top central node curves for intergral segment
Fig.20Comparison of external confining pressure ultimate load factor-elliptic imperfection amplitude curves for intergral and lining segments
Fig.21Comparison of error percentage of external confining pressure ultimate load factor-elliptic imperfection amplitude curves for intergral and lining segments
椭圆度缺陷w (‰)
α0
φ1
φ2
φ2/φ1
0
3.99
3.46
0.84~0.86
5
3.94
3.41
10
3.90
3.36
20
3.81
3.27
30
3.73
3.19
Tab.4Comparison of external confining pressure ultimate load factor and error percentage for intergral and lining segments
椭圆度缺陷w (‰)
误差百分比/%
(φ1?φ10)/φ10
φ1/φ10
(φ2?φ20)/φ20
φ2/φ20
0
0
0.935~1.000
0
0.922~1.000
5
?1.89
?1.37
10
?2.39
?2.73
20
?4.41
?5.32
30
?6.52
?7.80
Tab.4
Fig.22Comparison of external confining pressure ultimate load factor-inclination angle of major axis curves for segment
Fig.23Comparison of error percentage of external confining pressure ultimate load factor-inclination angle of major axis curves for segment
[1]
陈湘生, 李克, 包小华, 等 城市盾构隧道数字化智能建造发展概述[J]. 应用基础与工程科学学报, 2021, 29 (5): 1057- 1074 CHEN Xiang-sheng, LI Ke, BAO Xiao-hua, et al Innovations in the development of digital and intelligent construction of urban shield tunnels[J]. Journal of Basic Science and Engineering, 2021, 29 (5): 1057- 1074
[2]
何川, 封坤, 方勇 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50 (1): 97- 109 HE Chuan, FENG Kun, FANG Yong Review and pospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50 (1): 97- 109
doi: 10.3969/j.issn.0258-2724.2015.01.015
[3]
黄大维, 周顺华, 赖国泉, 等 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39 (7): 1173- 1181 HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, et al Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (7): 1173- 1181
doi: 10.11779/CJGE201707002
[4]
杨雨冰, 谢雄耀 基于断裂力学的盾构隧道管片结构开裂破损机制探讨[J]. 岩石力学与工程学报, 2015, 34 (10): 2114- 2124 YANG Yu-bing, XIE Xiong-yao Breaking mechanism of segmented lining in shield tunnel based on fracture mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2114- 2124
doi: 10.13722/j.cnki.jrme.2015.1003
[5]
郭文琦, 封坤, 苏昂, 等 围压对错缝拼装管片衬砌结构力学性能的影响[J]. 中国公路学报, 2021, 34 (11): 200- 210 GUO Wen-qi, FENG Kun, SU Ang, et al The influence of confining pressure on the mechanical properties of staggered assembling segment lining structure[J]. China Journal of Highway and Transport, 2021, 34 (11): 200- 210
[6]
黄伟明, 王金昌, 徐日庆, 等 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报: 工学版, 2020, 54 (4): 787- 795 HUANG Wei-ming, WANG Jin-chang, XU Ri-qing, et al Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 787- 795
[7]
DO N A, DIAS D, ORESTE P, et al A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 38 (15): 1617- 1632
[8]
LEE K M, HOU X Y, GE X W, et al An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25 (4): 365- 390
doi: 10.1002/nag.134
[9]
刘洪清, 刘华北 盾构隧道管片及纵向接头力学性能数值模拟研究[J]. 地下空间与工程学报, 2019, 15 (6): 1800- 1810 LIU Hong-qing, LIU Hua-bei Numerical investigation on the mechanical behavior of shield tunnel segment and their longitudinal joint[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (6): 1800- 1810
[10]
汪亦显, 单生彪, 袁海平, 等 盾构隧道衬砌管片接头张合状态力学模型及数值模拟[J]. 建筑结构学报, 2017, 38 (5): 158- 166 WANG Yi-xian, SHAN Sheng-biao, YUAN Hai-ping, et al Mechanical model and numerical simulation for patulous-occlusive situation of joint of shield tunnel lining segment[J]. Journal of Building Structures, 2017, 38 (5): 158- 166
[11]
ZHOU J M, HE C, FENG K, et al Model test on structural behaviour of underwater shield tunnel with large cross-section considering assembling modes[J]. Advanced Materials Research, 2011, 243-249: 3560- 3564
doi: 10.4028/www.scientific.net/AMR.243-249.3560
[12]
张力, 封坤, 何川, 等 盾构隧道管片接头破坏特征及损伤特性试验研究[J]. 土木工程学报, 2021, 54 (5): 98- 107 ZHANG Li, FENG Kun, HE Chuan, et al Experimental study on failure behaviors and damage characteristics of segmental joints of shield tunnels[J]. China Civil Engineering Journal, 2021, 54 (5): 98- 107
[13]
巩一凡, 丁文其, 龚琛杰, 等 大断面类矩形盾构隧道管片接头极限抗剪切承载力试验研究[J]. 土木工程学报, 2019, 52 (11): 120- 128 GONG Yi-fan, DING Wen-qi, GONG Chen-jie, et al Experimental study on the ultimate shear bearing capacity of segment joint in shield tunnel with large quasi-rectangular cross-section[J]. China Civil Engineering Journal, 2019, 52 (11): 120- 128
[14]
李守巨, 李雨陶, 上官子昌 混凝土管片极限承载力计算模型及其模拟分析[J]. 中国矿业大学学报, 2017, 46 (2): 397- 403 LI Shou-ju, LI Yu-tao, SHANGGUAN Zi-chang Computational models and numerical simulations for ultimate bearing capacity of concrete segments[J]. Journal of China University of Mining and Technology, 2017, 46 (2): 397- 403
[15]
李守巨, 王志云, 杜洪泽 混凝土管片接头极限承载力特性的实验[J]. 黑龙江科技大学学报, 2020, 30 (2): 219- 224 LI Shou-ju, WANG Zhi-yun, DU Hong-ze Experimental study on characteristics behind ultimate bearing capacity of concrete segment joints[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30 (2): 219- 224
doi: 10.3969/j.issn.2095-7262.2020.02.019
[16]
郭瑞, 何川 盾构隧道管片衬砌结构稳定性研究[J]. 中国公路学报, 2015, 28 (6): 74- 81 GUO Rui, HE Chuan Study on stability of segment lining structure for shield tunnel[J]. China Journal of Highway and Transport, 2015, 28 (6): 74- 81
doi: 10.3969/j.issn.1001-7372.2015.06.011
[17]
柳献, 赵子蓬, 叶宇航, 等 类矩形盾构隧道结构极限承载力分析[J]. 同济大学学报:自然科学版, 2020, 48 (9): 1283- 1295 LIU Xian, ZHAO Zi-peng, YE Yu-hang, et al Ultimate bearing capacity analysis of quasi-rectangular shield tunnel structure[J]. Journal of Tongji University: Natural Science, 2020, 48 (9): 1283- 1295
[18]
丁智, 张霄, 周联英, 等 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1943- 1953,1979 DING Zhi, ZHANG Xiao, ZHOU Lian-ying, et al Research and prospect of interaction between close bridge pile and metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1943- 1953,1979
[19]
魏新江, 张默爆, 丁智, 等 盾构穿越对既有地铁隧道影响研究现状与展望[J]. 岩土力学, 2020, 41 (S2): 442- 461 WEI Xin-jiang, ZHANG Mo-bao, DING Zhi, et al Research status and prospect of shield tunneling on preexisting metro tunnels[J]. Rock and Soil Mechanics, 2020, 41 (S2): 442- 461
[20]
苏昂, 王士民, 何川, 等 复合地层盾构隧道管片施工病害特征及成因分析[J]. 岩土工程学报, 2019, 41 (4): 683- 692 SU Ang, WANG Shi-min, HE Chuan, et al Disease characteristics and causes analysis of segments of shield tunnels in composite stratum during construction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (4): 683- 692
[21]
LI X J, LIN X D, ZHU H H, et al Condition assessment of shield tunnel using a new indicator: the tunnel serviceability index[J]. Tunnelling and Underground Space Technology, 2017, 67 (8): 98- 106
DING Z, ZHANG X, YIN X S, et al Analysis of the influence of soft soil grouting on the metro tunnel based on field measurement[J]. Engineering Computations, 2019, 36 (5): 1522- 1541
doi: 10.1108/EC-08-2018-0350
[24]
董飞, 房倩, 张顶立, 等 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50 (6): 104- 113 DONG Fei, FANG Qian, ZHANG Ding-li, et al Analysis on defects of operational metro tunnels in beijing[J]. China Civil Engineering Journal, 2017, 50 (6): 104- 113
doi: 10.15951/j.tmgcxb.2017.06.012
[25]
刘德军, 仲飞, 黄宏伟, 等. 运营隧道衬砌病害诊治的现状与发展[J/OL]. 中国公路学报. https://kns.cnki.net/ kcms/detail/61.1313.U.20201116.1543.004.html. LIU De-jun, ZHONG Fei, HUANG Hong-wei, et al. Present status and development trend of diagnosis and treatment of tunnel lining diseases [J/OL]. China Journal of Highway and Transport. https://kns.cnki.net/kcms/detail/61.1313.U.20201116.1543.004.html.