| 电子与通信工程 |
|
|
|
|
| 基于跨受试者邻近刺激学习的稳态视觉诱发电位信号识别 |
杜凡( ),王勇,严军,郭红想*( ) |
| 中国地质大学(武汉) 机械与电子信息学院,湖北 武汉 430074 |
|
| Steady-state visual evoked potential signal recognition based on cross-subject neighboring stimulus learning |
Fan DU( ),Yong WANG,Jun YAN,Hongxiang GUO*( ) |
| School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China |
引用本文:
杜凡,王勇,严军,郭红想. 基于跨受试者邻近刺激学习的稳态视觉诱发电位信号识别[J]. 浙江大学学报(工学版), 2025, 59(12): 2472-2482.
Fan DU,Yong WANG,Jun YAN,Hongxiang GUO. Steady-state visual evoked potential signal recognition based on cross-subject neighboring stimulus learning. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2472-2482.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.002
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2472
|
| 1 |
RAVI A, LU J, PEARCE S, et al Enhanced system robustness of asynchronous BCI in augmented reality using steady-state motion visual evoked potential[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 85- 95
doi: 10.1109/TNSRE.2022.3140772
|
| 2 |
WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113 (6): 767- 791
doi: 10.1016/S1388-2457(02)00057-3
|
| 3 |
YADAV D, YADAV S, VEER K A comprehensive assessment of brain computer interfaces: recent trends and challenges[J]. Journal of Neuroscience Methods, 2020, 346: 108918
doi: 10.1016/j.jneumeth.2020.108918
|
| 4 |
BIN G, GAO X, YAN Z, et al An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method[J]. Journal of Neural Engineering, 2009, 6 (4): 046002
doi: 10.1088/1741-2560/6/4/046002
|
| 5 |
YIN E, ZHOU Z, JIANG J, et al A speedy hybrid BCI spelling approach combining P300 and SSVEP[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61 (2): 473- 483
doi: 10.1109/TBME.2013.2281976
|
| 6 |
CHEN X, WANG Y, NAKANISHI M, et al High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (44): 6058- 6067
|
| 7 |
PEI W, WU X, ZHANG X, et al A pre-gelled EEG electrode and its application in SSVEP-based BCI[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 843- 850
doi: 10.1109/TNSRE.2022.3161989
|
| 8 |
CHENG M, GAO X, GAO S, et al Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Bio-Medical Engineering, 2002, 49 (10): 1181- 1186
doi: 10.1109/TBME.2002.803536
|
| 9 |
陈熙来, 丛佩超, 万东宝, 等 基于SSVEP信号的下肢外骨骼机器人控制系统研究[J]. 机电信息, 2024, (7): 42- 45 CHEN Xilai, CONG Peichao, WAN Dongbao, et al Research on lower limb exoskeleton robot control system based on SSVEP signals[J]. Mechanical and Electrical Information, 2024, (7): 42- 45
|
| 10 |
CHAI X, ZHANG Z, GUAN K, et al A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis[J]. Biomedical Signal Processing and Control, 2020, 56: 101687
doi: 10.1016/j.bspc.2019.101687
|
| 11 |
REZEIKA A, BENDA M, STAWICKI P, et al Brain-computer interface spellers: a review[J]. Brain Sciences, 2018, 8 (4): 57
doi: 10.3390/brainsci8040057
|
| 12 |
MÜLLER-PUTZ G R, PFURTSCHELLER G Control of an electrical prosthesis with an SSVEP-based BCI[J]. IEEE Transactions on Bio-Medical Engineering, 2008, 55 (1): 361- 364
doi: 10.1109/TBME.2007.897815
|
| 13 |
FRIMAN O, VOLOSYAK I, GRÄSER A Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces[J]. IEEE Transactions on Bio-Medical Engineering, 2007, 54 (4): 742- 750
doi: 10.1109/TBME.2006.889160
|
| 14 |
ZHANG Y, XU P, CHENG K, et al Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface[J]. Journal of Neuroscience Methods, 2014, 221: 32- 40
doi: 10.1016/j.jneumeth.2013.07.018
|
| 15 |
LIN Z, ZHANG C, WU W, et al Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (12): 2610- 2614
doi: 10.1109/TBME.2006.886577
|
| 16 |
CHEN X, WANG Y, GAO S, et al Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12 (4): 046008
doi: 10.1088/1741-2560/12/4/046008
|
| 17 |
ZHANG Y, ZHOU G, JIN J, et al Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis[J]. International Journal of Neural Systems, 2014, 24 (4): 1450013
doi: 10.1142/S0129065714500130
|
| 18 |
CHEN X, WANG Y, NAKANISHI M, et al High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (44): 6058- 6067
|
| 19 |
NAKANISHI M, WANG Y, CHEN X, et al Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Bio-Medical Engineering, 2018, 65 (1): 104- 112
doi: 10.1109/TBME.2017.2694818
|
| 20 |
LIU B, CHEN X, SHI N, et al Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1998- 2007
doi: 10.1109/TNSRE.2021.3114340
|
| 21 |
KE Y, LIU S, MING D Enhancing SSVEP identification with less individual calibration data using periodically repeated component analysis[J]. IEEE Transactions on Bio-Medical Engineering, 2024, 71 (4): 1319- 1331
doi: 10.1109/TBME.2023.3333435
|
| 22 |
HUANG J, YANG P, XIONG B, et al Incorporating neighboring stimuli data for enhanced SSVEP-based BCIs[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2521109
|
| 23 |
WONG C M, WAN F, WANG B, et al Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs[J]. Journal of Neural Engineering, 2020, 17 (1): 016026
doi: 10.1088/1741-2552/ab2373
|
| 24 |
YUAN P, CHEN X, WANG Y, et al Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information[J]. Journal of Neural Engineering, 2015, 12 (4): 046006
doi: 10.1088/1741-2560/12/4/046006
|
| 25 |
WAYTOWICH N R, FALLER J, GARCIA J O, et al. Unsupervised adaptive transfer learning for Steady-State Visual Evoked Potential brain-computer interfaces [C]// IEEE International Conference on Systems, Man, and Cybernetics. Budapest: IEEE, 2016: 4135–4140.
|
| 26 |
YAN W, WU Y, DU C, et al Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition[J]. Journal of Neural Engineering, 2022, 19 (3): 036008
doi: 10.1088/1741-2552/ac6b57
|
| 27 |
YAN W, WU Y, DU C, et al An improved cross-subject spatial filter transfer method for SSVEP-based BCI[J]. Journal of Neural Engineering, 2022, 19 (4): 046028
doi: 10.1088/1741-2552/ac81ee
|
| 28 |
WANG H, SUN Y, WANG F, et al Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 517- 526
doi: 10.1109/TNSRE.2021.3057938
|
| 29 |
LAN W, WANG R, HE Y, et al Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 3545- 3555
doi: 10.1109/TNSRE.2023.3309543
|
| 30 |
WEI Q, ZHANG Y, WANG Y, et al A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2809- 2821
doi: 10.1109/TNSRE.2023.3288397
|
| 31 |
CHIANG K J, WEI C S, NAKANISHI M, et al. Cross-subject transfer learning improves the practicality of real-world applications of brain-computer interfaces [C]// 9th International IEEE/EMBS Conference on Neural Engineering. San Francisco: IEEE, 2019: 424–427.
|
| 32 |
BIAN R, WU H, LIU B, et al Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 31: 446- 455
|
| 33 |
LUO R, XU M, ZHOU X, et al Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces[J]. IEEE Transactions on Bio-Medical Engineering, 2023, 70 (6): 1775- 1785
doi: 10.1109/TBME.2022.3227036
|
| 34 |
MÜLLER M M, HILLYARD S Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention[J]. Clinical Neurophysiology, 2000, 111 (9): 1544- 1552
doi: 10.1016/S1388-2457(00)00371-0
|
| 35 |
MUN S, PARK M C, PARK S, et al SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D[J]. Neuroscience Letters, 2012, 525 (2): 89- 94
doi: 10.1016/j.neulet.2012.07.049
|
| 36 |
WANG Y, CHEN X, GAO X, et al A benchmark dataset for SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25 (10): 1746- 1752
doi: 10.1109/TNSRE.2016.2627556
|
| 37 |
LIU B, HUANG X, WANG Y, et al BETA: a large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14: 627
doi: 10.3389/fnins.2020.00627
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|