Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2472-2482    DOI: 10.3785/j.issn.1008-973X.2025.12.002
电子与通信工程     
基于跨受试者邻近刺激学习的稳态视觉诱发电位信号识别
杜凡(),王勇,严军,郭红想*()
中国地质大学(武汉) 机械与电子信息学院,湖北 武汉 430074
Steady-state visual evoked potential signal recognition based on cross-subject neighboring stimulus learning
Fan DU(),Yong WANG,Jun YAN,Hongxiang GUO*()
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
 全文: PDF(3291 KB)   HTML
摘要:

为了解决稳态视觉诱发电位(SSVEP)脑-机接口(BCI)系统在校准试验不足时的性能限制,提出跨受试者邻近刺激学习的SSVEP信号识别方法. 该方法结合目标受试者校准试验与正余弦参考信号,通过SAME数据增强方法,将正余弦参考信号邻近刺激基波和谐波信息有效融入目标受试者任务相关信息中. 在此基础上,通过分析目标受试者内、目标受试者与源受试者之间以及目标受试者与参考信号之间的相关性,利用典型相关分析(CCA)提取信号的基波和谐波特性,并结合任务相关成分分析(TRCA)提取信号的任务相关信息,从而优化空间滤波器. 从目标受试者和源受试者中提取邻近刺激公共频率信息,最终通过模板匹配实现目标识别. 实验结果表明,在仅使用一次校准试验的情况下,所提出的方法在Benchmark和BETA数据集上的识别准确率分别达到了80.17%和70.83%,且识别时间仅为0.6 s,相较于当前最先进的跨受试者学习方法eTransRCA,分别提高了16.75、15.85个百分点. 结果证明了该方法在提高识别准确率和缩短校准试验时间方面的优势,验证了其有效性.

关键词: 脑-机接口稳态视觉诱发电位(SSVEP)邻近刺激学习迁移学习跨受试者    
Abstract:

A cross-subject neighboring stimulus learning method for steady-state visual evoked potential (SSVEP) signal recognition was proposed to address the performance limitations of SSVEP brain-computer interface (BCI) systems under conditions of insufficient calibration trials. Target-subject calibration trials were combined with sine-cosine reference signals, and the sine-cosine reference signal neighboring stimulus fundamental and harmonic information was effectively incorporated into the target-subject task-relevant information through the SAME data augmentation technique. On this basis, the fundamental and harmonic characteristics of the signal were extracted using canonical correlation analysis (CCA), and the task-related information of the signal was extracted in combination with task-related component analysis (TRCA). The spatial filter was optimized by analyzing the correlations within the target subject, between the target subject and the source subject, and between the target subject and the reference signal. Common frequency information from neighboring stimulus was extracted from both the target and source subjects, and target recognition was achieved through template matching. The experimental results showed that the proposed method achieved recognition accuracies of 80.17% and 70.83% on Benchmark and BETA datasets, respectively, using only one calibration trial, and the recognition time was only 0.6 seconds, which was an improvement of 16.75 percentage points and 15.85 percentage points, respectively, compared with the current state-of-the-art cross-subject learning method, eTransRCA. These results demonstrated the advantages of improving recognition accuracy and shortening calibration trial time, validating the effectiveness of the method.

Key words: brain-computer interface    steady-state visual evoked potential (SSVEP)    neighboring stimulus learning    transfer learning    cross-subject
收稿日期: 2024-12-18 出版日期: 2025-11-25
CLC:  TN 911.7  
基金资助: 国家自然科学基金资助项目(61973283).
通讯作者: 郭红想     E-mail: 2498117298@qq.com;guohongxiang@cug.edu.cn
作者简介: 杜凡(2001—),男,硕士生,从事脑-机接口研究. orcid.org/0009-0002-0057-1033. E-mail:2498117298@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杜凡
王勇
严军
郭红想

引用本文:

杜凡,王勇,严军,郭红想. 基于跨受试者邻近刺激学习的稳态视觉诱发电位信号识别[J]. 浙江大学学报(工学版), 2025, 59(12): 2472-2482.

Fan DU,Yong WANG,Jun YAN,Hongxiang GUO. Steady-state visual evoked potential signal recognition based on cross-subject neighboring stimulus learning. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2472-2482.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.002        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2472

图 1  获取空间滤波器流程图
图 2  不同数据长度和校准试验数量下的分类准确率和ITR的比较
图 3  受试者在所提方法和eTransRCA方法下获得的特征值
图 4  多刺激学习与邻近刺激学习算法对比
图 5  不同校准试验数量和源受试者数量条件下的分类准确率
图 6  不同校准试验数量的分类准确率对比
图 7  不同算法下受试者分类正确率分布
图 8  目标刺激的邻近刺激定义
图 9  不同邻近刺激数量下的分类准确率
图 10  不同数据长度的分类准确率对比
情况相关系数选择P/%
$ {{r}}_{1} $$ {{r}}_{2} $$ \dfrac{1}{3}({{r}}_{3}+{{r}}_{4}+{{r}}_{5}) $BenchmarkBETA
(a)80.1770.83
(b)?77.6267.74
(c)?70.2161.78
(d)?79.1368.43
表 1  不同相关系数组合的消融实验
选择方法P/%
Nt = 1Nt = 2Nt = 3Nt = 4Nt = 5
随机选择70.3476.4079.5480.1381.34
有经验选择71.4378.1580.6381.5482.82
p************
表 2  2种源受试者选择方法的分类准确率对比
1 RAVI A, LU J, PEARCE S, et al Enhanced system robustness of asynchronous BCI in augmented reality using steady-state motion visual evoked potential[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 85- 95
doi: 10.1109/TNSRE.2022.3140772
2 WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113 (6): 767- 791
doi: 10.1016/S1388-2457(02)00057-3
3 YADAV D, YADAV S, VEER K A comprehensive assessment of brain computer interfaces: recent trends and challenges[J]. Journal of Neuroscience Methods, 2020, 346: 108918
doi: 10.1016/j.jneumeth.2020.108918
4 BIN G, GAO X, YAN Z, et al An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method[J]. Journal of Neural Engineering, 2009, 6 (4): 046002
doi: 10.1088/1741-2560/6/4/046002
5 YIN E, ZHOU Z, JIANG J, et al A speedy hybrid BCI spelling approach combining P300 and SSVEP[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61 (2): 473- 483
doi: 10.1109/TBME.2013.2281976
6 CHEN X, WANG Y, NAKANISHI M, et al High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (44): 6058- 6067
7 PEI W, WU X, ZHANG X, et al A pre-gelled EEG electrode and its application in SSVEP-based BCI[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 843- 850
doi: 10.1109/TNSRE.2022.3161989
8 CHENG M, GAO X, GAO S, et al Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Bio-Medical Engineering, 2002, 49 (10): 1181- 1186
doi: 10.1109/TBME.2002.803536
9 陈熙来, 丛佩超, 万东宝, 等 基于SSVEP信号的下肢外骨骼机器人控制系统研究[J]. 机电信息, 2024, (7): 42- 45
CHEN Xilai, CONG Peichao, WAN Dongbao, et al Research on lower limb exoskeleton robot control system based on SSVEP signals[J]. Mechanical and Electrical Information, 2024, (7): 42- 45
10 CHAI X, ZHANG Z, GUAN K, et al A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis[J]. Biomedical Signal Processing and Control, 2020, 56: 101687
doi: 10.1016/j.bspc.2019.101687
11 REZEIKA A, BENDA M, STAWICKI P, et al Brain-computer interface spellers: a review[J]. Brain Sciences, 2018, 8 (4): 57
doi: 10.3390/brainsci8040057
12 MÜLLER-PUTZ G R, PFURTSCHELLER G Control of an electrical prosthesis with an SSVEP-based BCI[J]. IEEE Transactions on Bio-Medical Engineering, 2008, 55 (1): 361- 364
doi: 10.1109/TBME.2007.897815
13 FRIMAN O, VOLOSYAK I, GRÄSER A Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces[J]. IEEE Transactions on Bio-Medical Engineering, 2007, 54 (4): 742- 750
doi: 10.1109/TBME.2006.889160
14 ZHANG Y, XU P, CHENG K, et al Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface[J]. Journal of Neuroscience Methods, 2014, 221: 32- 40
doi: 10.1016/j.jneumeth.2013.07.018
15 LIN Z, ZHANG C, WU W, et al Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (12): 2610- 2614
doi: 10.1109/TBME.2006.886577
16 CHEN X, WANG Y, GAO S, et al Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12 (4): 046008
doi: 10.1088/1741-2560/12/4/046008
17 ZHANG Y, ZHOU G, JIN J, et al Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis[J]. International Journal of Neural Systems, 2014, 24 (4): 1450013
doi: 10.1142/S0129065714500130
18 CHEN X, WANG Y, NAKANISHI M, et al High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (44): 6058- 6067
19 NAKANISHI M, WANG Y, CHEN X, et al Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Bio-Medical Engineering, 2018, 65 (1): 104- 112
doi: 10.1109/TBME.2017.2694818
20 LIU B, CHEN X, SHI N, et al Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1998- 2007
doi: 10.1109/TNSRE.2021.3114340
21 KE Y, LIU S, MING D Enhancing SSVEP identification with less individual calibration data using periodically repeated component analysis[J]. IEEE Transactions on Bio-Medical Engineering, 2024, 71 (4): 1319- 1331
doi: 10.1109/TBME.2023.3333435
22 HUANG J, YANG P, XIONG B, et al Incorporating neighboring stimuli data for enhanced SSVEP-based BCIs[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2521109
23 WONG C M, WAN F, WANG B, et al Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs[J]. Journal of Neural Engineering, 2020, 17 (1): 016026
doi: 10.1088/1741-2552/ab2373
24 YUAN P, CHEN X, WANG Y, et al Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information[J]. Journal of Neural Engineering, 2015, 12 (4): 046006
doi: 10.1088/1741-2560/12/4/046006
25 WAYTOWICH N R, FALLER J, GARCIA J O, et al. Unsupervised adaptive transfer learning for Steady-State Visual Evoked Potential brain-computer interfaces [C]// IEEE International Conference on Systems, Man, and Cybernetics. Budapest: IEEE, 2016: 4135–4140.
26 YAN W, WU Y, DU C, et al Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition[J]. Journal of Neural Engineering, 2022, 19 (3): 036008
doi: 10.1088/1741-2552/ac6b57
27 YAN W, WU Y, DU C, et al An improved cross-subject spatial filter transfer method for SSVEP-based BCI[J]. Journal of Neural Engineering, 2022, 19 (4): 046028
doi: 10.1088/1741-2552/ac81ee
28 WANG H, SUN Y, WANG F, et al Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 517- 526
doi: 10.1109/TNSRE.2021.3057938
29 LAN W, WANG R, HE Y, et al Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 3545- 3555
doi: 10.1109/TNSRE.2023.3309543
30 WEI Q, ZHANG Y, WANG Y, et al A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2809- 2821
doi: 10.1109/TNSRE.2023.3288397
31 CHIANG K J, WEI C S, NAKANISHI M, et al. Cross-subject transfer learning improves the practicality of real-world applications of brain-computer interfaces [C]// 9th International IEEE/EMBS Conference on Neural Engineering. San Francisco: IEEE, 2019: 424–427.
32 BIAN R, WU H, LIU B, et al Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 31: 446- 455
33 LUO R, XU M, ZHOU X, et al Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces[J]. IEEE Transactions on Bio-Medical Engineering, 2023, 70 (6): 1775- 1785
doi: 10.1109/TBME.2022.3227036
34 MÜLLER M M, HILLYARD S Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention[J]. Clinical Neurophysiology, 2000, 111 (9): 1544- 1552
doi: 10.1016/S1388-2457(00)00371-0
35 MUN S, PARK M C, PARK S, et al SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D[J]. Neuroscience Letters, 2012, 525 (2): 89- 94
doi: 10.1016/j.neulet.2012.07.049
36 WANG Y, CHEN X, GAO X, et al A benchmark dataset for SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25 (10): 1746- 1752
doi: 10.1109/TNSRE.2016.2627556
37 LIU B, HUANG X, WANG Y, et al BETA: a large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14: 627
doi: 10.3389/fnins.2020.00627
[1] 王光明,柏正尧,宋帅,徐月娥. 阿尔茨海默病辅助诊断的多模态数据融合轻量级网络[J]. 浙江大学学报(工学版), 2025, 59(1): 39-48.
[2] 陈珂,张文浩. 基于对比学习的零样本对象谣言检测[J]. 浙江大学学报(工学版), 2024, 58(9): 1790-1800.
[3] 周姿含,王叙萌,陈为. 基于迁移学习的交互时序数据可视化生成方法[J]. 浙江大学学报(工学版), 2024, 58(2): 239-246.
[4] 赵蕴龙,赵敏喆,朱文强,查星宇. 基于轻量化迁移学习的云边协同自然语言处理方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2531-2539.
[5] 周逸凡,张灵维,周正东,蔡智,袁梦瑶,袁晓曦,杨泽毅. 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2024, 58(12): 2540-2546.
[6] 张灵维,周正东,许云飞,王嘉文,吉文韬,宋泽峰. 基于特征融合的语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2023, 57(4): 726-734.
[7] 华夏,王新晴,芮挺,邵发明,王东. 视觉感知的无人机端到端目标跟踪控制技术[J]. 浙江大学学报(工学版), 2022, 56(7): 1464-1472.
[8] 高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
[9] 付晓峰,牛力. 基于深度卷积和自编码器增强的微表情判别[J]. 浙江大学学报(工学版), 2022, 56(10): 1948-1957.
[10] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
[11] 康庄,杨杰,郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版), 2020, 54(7): 1272-1280.
[12] 沈宗礼,余建波. 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报(工学版), 2020, 54(6): 1228-1239.
[13] 付晓峰,牛力,胡卓群,李建军,吴卿. 基于过渡帧概念训练的微表情检测深度网络[J]. 浙江大学学报(工学版), 2020, 54(11): 2128-2137.
[14] 朱凡,李悦,蒋 凯,叶树明,郑筱祥. 基于偏最小二乘的大鼠初级运动皮层解码[J]. J4, 2013, 47(5): 901-905.
[15] 朱凡,蒋凯,吕荣坤,张韶岷,郑筱祥. 小量程大行程压杆检测系统及在脑-机接口的应用[J]. J4, 2011, 45(9): 1693-1696.