Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2154-2163    DOI: 10.3785/j.issn.1008-973X.2025.10.016
计算机技术     
基于语义分割的启发式采样路径规划算法
潘嘉威(),王淳立,郑秀娟,涂海燕*()
四川大学 电气工程学院,四川 成都 610065
Heuristic sampling path planning algorithm based on semantic segmentation
Jiawei PAN(),Chunli WANG,Xiujuan ZHENG,Haiyan TU*()
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(2243 KB)   HTML
摘要:

经典快速探索随机树(RRT)路径规划算法存在冗余采样点多、随机性强、路径不平滑等不足,为此提出新的路径规划算法. 设计最优路径区域预测网络模型(OPAPN),利用深度学习方法预测地图中的潜在最优路径区域. 整合全局特征提取模块、融合注意力机制以及可切换空洞卷积技术,提升网络对整体地图布局和起点/终点信息的理解,有效降低计算开销. 通过在OPAPN预测出的最优路径区域实施启发式采样来大幅减少采样点数量,采用双树扩展策略来加速算法的收敛速度. 仿真实验及真实环境测试表明,所提算法在收敛时间、节点数量和路径长度方面的性能表现良好,具有实际应用价值.

关键词: 移动机器人路径规划快速探索随机树(RRT)深度学习语义分割注意力机制    
Abstract:

A new path planning algorithm was proposed to address the limitations of the conventional rapidly-exploring random trees (RRT) path planning algorithm, including excessive redundant sampling points, increased randomness, and lack of smooth paths. A model named the optimal path area prediction network (OPAPN) was developed to predict potential optimal path areas within the map using deep learning techniques. A global feature extraction module, a hybrid attention mechanism, and switchable atrous convolution techniques were incorporated in the model. The network’s understanding of the map’s overall layout and start/goal information was enhanced by the components to reduce unnecessary computational burdens. The number of sampling points was reduced significantly through heuristic sampling in the optimal path regions predicted by OPAPN, and the algorithm’s convergence speed was accelerated via a dual-tree expansion strategy. Both simulation experiments and real-world tests showed that the proposed algorithm performed well in convergence time, node count, and path length, confirming its practical application value.

Key words: mobile robot    path planning    rapidly-exploring random trees (RRT)    deep learning    semantic segmentation    attention mechanism
收稿日期: 2024-10-09 出版日期: 2025-10-27
CLC:  TP 242  
基金资助: 四川省科技计划资助项目(2022YFS0032).
通讯作者: 涂海燕     E-mail: panjiawei@stu.scu.edu.cn;haiyantu@scu.edu.cn
作者简介: 潘嘉威(2001—),男,硕士生,从事移动机器人路径规划研究. orcid.org/0009-0007-7125-148X. E-mail:panjiawei@stu.scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
潘嘉威
王淳立
郑秀娟
涂海燕

引用本文:

潘嘉威,王淳立,郑秀娟,涂海燕. 基于语义分割的启发式采样路径规划算法[J]. 浙江大学学报(工学版), 2025, 59(10): 2154-2163.

Jiawei PAN,Chunli WANG,Xiujuan ZHENG,Haiyan TU. Heuristic sampling path planning algorithm based on semantic segmentation. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2154-2163.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2154

图 1  最优路径区域预测网络模型的结构
图 2  全局特征提取模块的结构
图 3  坐标注意力的结构
图 4  交叉注意力的结构
图 5  融合注意力机制的结构
图 6  可切换空洞卷积技术的结构
图 7  快速探索随机树路径规划算法的节点生成过程
图 8  最优路径区域地图离散化过程
图 9  路径优化过程示意图
图 10  训练最优路径区域预测网络模型的数据集图像
图 11  预测区域连通性评价示意图
图 12  最优路径区域预测网络模型测试集预测结果
网络架构RC/%t/msP/106
基线模型93.5827.545.81
ResNet-1889.59(?3.99)28.276.33
ResNet-5086.70(?6.88)141.5017.74
RegNet91.28(?2.30)26.956.33
+CBAM94.04(+0.46)28.805.86
+CA93.81(+0.23)27.945.84
+CCA94.27(+0.69)28.965.91
+HA94.72(+1.14)29.125.95
+GFE95.18(+1.60)32.086.02
+SAC94.95(+1.37)31.915.23
+GFE+CBAM+SAC95.64(+2.06)32.135.49
+GFE+HA+SAC96.56(+2.98)32.705.57
表 1  最优路径区域预测网络模型的模块消融实验结果
图 13  不同算法在4张仿真地图中路径规划结果对比
地图编号算法$ {t}_{\max} $/s$ {t}_{\min} $/s$ \overline{t}_{\mathrm{c}} $/s$ \overline{N} $$ \overline{L} $
1RRT2.9800.6572.6641 1341 763
RRT-Connect1.1230.4400.7256841 775
文献[27]4.0831.2702.3757581 804
本研究0.7740.4730.5842431 304
2RRT5.4600.2381.7991 0511 077
RRT-Connect3.6080.1610.758538989
文献[27]22.7550.1014.7419421 028
本研究0.4320.2050.256111840
3RRT8.3642.4794.7632 0172 278
RRT-Connect3.7030.9691.7421 0972 256
文献[27]14.8805.2849.6571 6902 319
本研究1.3560.6760.8323641 832
4RRT5.1700.7082.5211 3491 627
RRT-Connect1.5240.3830.9345831 614
文献[27]4.9570.6322.0087781 616
本研究0.9120.3620.5152031 305
表 2  不同算法的路径规划性能参数对比(仿真环境测试)
图 14  移动机器人的测试环境
图 15  不同算法在真实环境测试中路径规划结果对比
算法$ \overline{t}_{\mathrm{c}} $/s$ \overline{N} $$ \overline{L} $
RRT1.5734051 498
RRT-Connect0.6072281 465
文献[27]0.8522651 541
本研究0.5031411 302
表 3  不同算法的路径规划性能参数对比(真实环境测试)
1 DONG L, HE Z, SONG C, et al A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures[J]. Journal of Systems Engineering and Electronics, 2023, 34 (2): 439- 459
doi: 10.23919/JSEE.2023.000051
2 赵学健, 叶昊, 贾伟, 等 AGV路径规划及避障算法研究综述[J]. 小型微型计算机系统, 2024, 45 (3): 529- 541
ZHAO Xuejian, YE Hao, JIA Wei, et al Survey on AGV path planning and obstacle avoidance algorithms[J]. Journal of Chinese Computer Systems, 2024, 45 (3): 529- 541
3 SUNDARRAJ S, REDDY R V K, BASAM M B, et al Route planning for an autonomous robotic vehicle employing a weight-controlled particle swarm-optimized dijkstra algorithm[J]. IEEE Access, 2023, 11: 92433- 92442
doi: 10.1109/ACCESS.2023.3302698
4 LIN Z, WU K, SHEN R, et al An efficient and accurate A-star algorithm for autonomous vehicle path planning[J]. IEEE Transactions on Vehicular Technology, 2024, 73 (6): 9003- 9008
doi: 10.1109/TVT.2023.3348140
5 SHAO S, ZHANG J, WANG T, et al Dynamic obstacle-avoidance algorithm for multi-robot flocking based on improved artificial potential field[J]. IEEE Transactions on Consumer Electronics, 2024, 70 (1): 4388- 4399
6 WANG L, WANG Z, YING Z, et al A path planning framework based on an improved weighted heuristic RRT and optimization strategy[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9 (1): 1941- 1952
7 刘文倩, 单梁, 张伟龙, 等 复杂环境下基于改进Informed RRT的无人机路径规划算法[J]. 上海交通大学学报, 2024, 58 (4): 511- 524
LIU Wenqian, SHAN Liang, ZHANG Weilong, et al Unmanned aerial vehicle path planning algorithm based on improved informed RRT in complex environment[J]. Journal of Shanghai Jiao Tong University, 2024, 58 (4): 511- 524
8 MENG F, CHEN L, MA H, et al NR-RRT: neural risk-aware near-optimal path planning in uncertain nonconvex environments[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (1): 135- 146
doi: 10.1109/TASE.2022.3215562
9 ZHANG W, SHAN L, CHANG L, et al SVF-RRT*: a stream-based VF-RRT* for USVs path planning considering ocean currents[J]. IEEE Robotics and Automation Letters, 2023, 8 (4): 2413- 2420
10 巩浩, 谭向全, 李佳欣, 等 基于改进RRT算法的移动机器人路径规划研究[J]. 组合机床与自动化加工技术, 2024, (1): 19- 24
GONG Hao, TAN Xiangquan, LI Jiaxin, et al Research on path planning of mobile robot based on improved RRT algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2024, (1): 19- 24
11 KARAMAN S, FRAZZOLI E Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30 (7): 846- 894
doi: 10.1177/0278364911406761
12 龚立雄, 陈佳霖, 黄霄, 等 基于改进Informed-RRT*算法的舰载机甲板平面路径规划[J]. 科学技术与工程, 2024, 24 (17): 7429- 7437
GONG Lixiong, CHEN Jialin, HUANG Xiao, et al Aircraft deck flat path planning based on improved informed-RRT* algorithm[J]. Science Technology and Engineering, 2024, 24 (17): 7429- 7437
13 SUN Z, LEI B, XIE P, et al Multi-risk-RRT: an efficient motion planning algorithm for robotic autonomous luggage trolley collection at airports[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9 (2): 3450- 3463
doi: 10.1109/TIV.2023.3349171
14 李昭莹, 欧一鸣, 石若凌 基于深度Q网络的改进RRT路径规划算法[J]. 空天防御, 2021, 4 (3): 17- 23
LI Zhaoying, OU Yiming, SHI Ruoling Improved RRT path planning algorithm based on deep Q-network[J]. Air and Space Defense, 2021, 4 (3): 17- 23
15 ZHAO C, ZHU Y, DU Y, et al A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 17910- 17921
doi: 10.1109/TITS.2022.3164391
16 ZHANG T, WANG J, MENG M Q H Generative adversarial network based heuristics for sampling-based path planning[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (1): 64- 74
doi: 10.1109/JAS.2021.1004275
17 QIAO S, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10208–10219.
18 SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510–4520.
19 CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017−12−05)[2024−11−11]. https://arxiv.org/pdf/1706.05587.
20 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// 31st Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017: 1–11.
21 HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708–13717.
22 HUANG Z, WANG X, WEI Y, et al CCNet: criss-cross attention for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (6): 6896- 6908
doi: 10.1109/TPAMI.2020.3007032
23 LI M, PENG P, SUN H, et al An order-invariant and interpretable dilated convolution neural network for chemical process fault detection and diagnosis[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21 (3): 3933- 3943
24 TU H, DENG Y, LI Q, et al Improved RRT global path planning algorithm based on Bridge Test[J]. Robotics and Autonomous Systems, 2024, 171: 104570
doi: 10.1016/j.robot.2023.104570
25 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
26 RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10425–10433.
27 李金良, 舒翰儒, 刘德建, 等 基于改进RRT路径规划算法[J]. 组合机床与自动化加工技术, 2021, (2): 22- 24
LI Jinliang, SHU Hanru, LIU Dejian, et al Path planning algorithm based on improved RRT[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021, (2): 22- 24
[1] 林鹏志,钟铭恩,范康,谭佳威,林志强. 基于跨任务双向特征交互的交通场景感知算法[J]. 浙江大学学报(工学版), 2025, 59(9): 1784-1792.
[2] 段继忠,李海源. 基于变分模型和Transformer的多尺度并行磁共振成像重建[J]. 浙江大学学报(工学版), 2025, 59(9): 1826-1837.
[3] 王福建,张泽天,陈喜群,王殿海. 基于多通道图聚合注意力机制的共享单车借还量预测[J]. 浙江大学学报(工学版), 2025, 59(9): 1986-1995.
[4] 张弘,张学成,王国强,顾潘龙,江楠. 基于三维视觉的软体机器人实时定位与控制[J]. 浙江大学学报(工学版), 2025, 59(8): 1574-1582.
[5] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[6] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[7] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[8] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[9] 熊慧,葛邦鲁,刘近贞,王家兴. 用于多无人机协同路径规划的改进黏菌蜂群算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1698-1707.
[10] 张静,王祎,陈子龙,李云松. 多目标多智能体路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1689-1697.
[11] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[12] 叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.
[13] 魏新雨,饶蕾,范光宇,陈年生,程松林,杨定裕. 用于无人机遥感图像的高精度实时语义分割网络[J]. 浙江大学学报(工学版), 2025, 59(7): 1411-1420.
[14] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.
[15] 郝琨,孟璇,赵晓芳,李志圣. 融合自适应势场法和深度强化学习的三维水下AUV路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1451-1461.