| 计算机技术 |
|
|
|
|
| 基于语义分割的启发式采样路径规划算法 |
潘嘉威( ),王淳立,郑秀娟,涂海燕*( ) |
| 四川大学 电气工程学院,四川 成都 610065 |
|
| Heuristic sampling path planning algorithm based on semantic segmentation |
Jiawei PAN( ),Chunli WANG,Xiujuan ZHENG,Haiyan TU*( ) |
| College of Electrical Engineering, Sichuan University, Chengdu 610065, China |
引用本文:
潘嘉威,王淳立,郑秀娟,涂海燕. 基于语义分割的启发式采样路径规划算法[J]. 浙江大学学报(工学版), 2025, 59(10): 2154-2163.
Jiawei PAN,Chunli WANG,Xiujuan ZHENG,Haiyan TU. Heuristic sampling path planning algorithm based on semantic segmentation. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2154-2163.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.016
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2154
|
| 1 |
DONG L, HE Z, SONG C, et al A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures[J]. Journal of Systems Engineering and Electronics, 2023, 34 (2): 439- 459
doi: 10.23919/JSEE.2023.000051
|
| 2 |
赵学健, 叶昊, 贾伟, 等 AGV路径规划及避障算法研究综述[J]. 小型微型计算机系统, 2024, 45 (3): 529- 541 ZHAO Xuejian, YE Hao, JIA Wei, et al Survey on AGV path planning and obstacle avoidance algorithms[J]. Journal of Chinese Computer Systems, 2024, 45 (3): 529- 541
|
| 3 |
SUNDARRAJ S, REDDY R V K, BASAM M B, et al Route planning for an autonomous robotic vehicle employing a weight-controlled particle swarm-optimized dijkstra algorithm[J]. IEEE Access, 2023, 11: 92433- 92442
doi: 10.1109/ACCESS.2023.3302698
|
| 4 |
LIN Z, WU K, SHEN R, et al An efficient and accurate A-star algorithm for autonomous vehicle path planning[J]. IEEE Transactions on Vehicular Technology, 2024, 73 (6): 9003- 9008
doi: 10.1109/TVT.2023.3348140
|
| 5 |
SHAO S, ZHANG J, WANG T, et al Dynamic obstacle-avoidance algorithm for multi-robot flocking based on improved artificial potential field[J]. IEEE Transactions on Consumer Electronics, 2024, 70 (1): 4388- 4399
|
| 6 |
WANG L, WANG Z, YING Z, et al A path planning framework based on an improved weighted heuristic RRT and optimization strategy[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9 (1): 1941- 1952
|
| 7 |
刘文倩, 单梁, 张伟龙, 等 复杂环境下基于改进Informed RRT的无人机路径规划算法[J]. 上海交通大学学报, 2024, 58 (4): 511- 524 LIU Wenqian, SHAN Liang, ZHANG Weilong, et al Unmanned aerial vehicle path planning algorithm based on improved informed RRT in complex environment[J]. Journal of Shanghai Jiao Tong University, 2024, 58 (4): 511- 524
|
| 8 |
MENG F, CHEN L, MA H, et al NR-RRT: neural risk-aware near-optimal path planning in uncertain nonconvex environments[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (1): 135- 146
doi: 10.1109/TASE.2022.3215562
|
| 9 |
ZHANG W, SHAN L, CHANG L, et al SVF-RRT*: a stream-based VF-RRT* for USVs path planning considering ocean currents[J]. IEEE Robotics and Automation Letters, 2023, 8 (4): 2413- 2420
|
| 10 |
巩浩, 谭向全, 李佳欣, 等 基于改进RRT算法的移动机器人路径规划研究[J]. 组合机床与自动化加工技术, 2024, (1): 19- 24 GONG Hao, TAN Xiangquan, LI Jiaxin, et al Research on path planning of mobile robot based on improved RRT algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2024, (1): 19- 24
|
| 11 |
KARAMAN S, FRAZZOLI E Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30 (7): 846- 894
doi: 10.1177/0278364911406761
|
| 12 |
龚立雄, 陈佳霖, 黄霄, 等 基于改进Informed-RRT*算法的舰载机甲板平面路径规划[J]. 科学技术与工程, 2024, 24 (17): 7429- 7437 GONG Lixiong, CHEN Jialin, HUANG Xiao, et al Aircraft deck flat path planning based on improved informed-RRT* algorithm[J]. Science Technology and Engineering, 2024, 24 (17): 7429- 7437
|
| 13 |
SUN Z, LEI B, XIE P, et al Multi-risk-RRT: an efficient motion planning algorithm for robotic autonomous luggage trolley collection at airports[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9 (2): 3450- 3463
doi: 10.1109/TIV.2023.3349171
|
| 14 |
李昭莹, 欧一鸣, 石若凌 基于深度Q网络的改进RRT路径规划算法[J]. 空天防御, 2021, 4 (3): 17- 23 LI Zhaoying, OU Yiming, SHI Ruoling Improved RRT path planning algorithm based on deep Q-network[J]. Air and Space Defense, 2021, 4 (3): 17- 23
|
| 15 |
ZHAO C, ZHU Y, DU Y, et al A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 17910- 17921
doi: 10.1109/TITS.2022.3164391
|
| 16 |
ZHANG T, WANG J, MENG M Q H Generative adversarial network based heuristics for sampling-based path planning[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (1): 64- 74
doi: 10.1109/JAS.2021.1004275
|
| 17 |
QIAO S, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10208–10219.
|
| 18 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510–4520.
|
| 19 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017−12−05)[2024−11−11]. https://arxiv.org/pdf/1706.05587.
|
| 20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// 31st Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017: 1–11.
|
| 21 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708–13717.
|
| 22 |
HUANG Z, WANG X, WEI Y, et al CCNet: criss-cross attention for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (6): 6896- 6908
doi: 10.1109/TPAMI.2020.3007032
|
| 23 |
LI M, PENG P, SUN H, et al An order-invariant and interpretable dilated convolution neural network for chemical process fault detection and diagnosis[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21 (3): 3933- 3943
|
| 24 |
TU H, DENG Y, LI Q, et al Improved RRT global path planning algorithm based on Bridge Test[J]. Robotics and Autonomous Systems, 2024, 171: 104570
doi: 10.1016/j.robot.2023.104570
|
| 25 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
| 26 |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10425–10433.
|
| 27 |
李金良, 舒翰儒, 刘德建, 等 基于改进RRT路径规划算法[J]. 组合机床与自动化加工技术, 2021, (2): 22- 24 LI Jinliang, SHU Hanru, LIU Dejian, et al Path planning algorithm based on improved RRT[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021, (2): 22- 24
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|