计算机技术、控制工程、通信技术 |
|
|
|
|
用于多无人机协同路径规划的改进黏菌蜂群算法 |
熊慧1,2( ),葛邦鲁1,2,刘近贞1,2,王家兴3 |
1. 天津工业大学 控制科学与工程学院,天津 300387 2. 天津工业大学 电气装备智能控制天津市重点实验室,天津 300387 3. 中国航空工业集团公司 沈阳飞机设计研究所,辽宁 沈阳 110000 |
|
Improved slime mould bee colony algorithm for multi-UAVs cooperative path planning |
Hui XIONG1,2( ),Banglu GE1,2,Jinzhen LIU1,2,Jiaxing WANG3 |
1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China 2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China 3. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110000, China |
引用本文:
熊慧,葛邦鲁,刘近贞,王家兴. 用于多无人机协同路径规划的改进黏菌蜂群算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1698-1707.
Hui XIONG,Banglu GE,Jinzhen LIU,Jiaxing WANG. Improved slime mould bee colony algorithm for multi-UAVs cooperative path planning. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1698-1707.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.017
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1698
|
1 |
LIANG Y, QI D, YAN J Z Adaptive leader–follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33 (11): 2972- 2988
doi: 10.1016/j.cja.2020.03.020
|
2 |
HASSANALIAN M, ABDELKEFI A Classifications, applications, and design challenges of drones: a review[J]. Progress in Aerospace Sciences, 2017, 91: 99- 131
doi: 10.1016/j.paerosci.2017.04.003
|
3 |
DEWANGAN R K, SHUKLA A, GODFREY W W Three-dimensional path planning using grey wolf optimizer for UAVs[J]. Applied Intelligence, 2019, 49: 2201- 2217
doi: 10.1007/s10489-018-1384-y
|
4 |
DE P, DUNNE E J, GHOSH J B, et al The discrete time-cost tradeoff problem revisited[J]. European Journal of Operational Research, 1995, 81 (2): 225- 238
doi: 10.1016/0377-2217(94)00187-H
|
5 |
ZHANG X, LU X, JIA S, et al A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning[J]. Applied Soft Computing, 2018, 70: 371- 388
doi: 10.1016/j.asoc.2018.05.030
|
6 |
QU C, GAI W, ZHANG J, et al A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning[J]. Knowledge-Based Systems, 2020, 194: 105530
doi: 10.1016/j.knosys.2020.105530
|
7 |
DUAN H, YU Y, ZHANG X, et al Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm[J]. Simulation Modelling Practice and Theory, 2010, 18 (8): 1104- 1115
doi: 10.1016/j.simpat.2009.10.006
|
8 |
HOUSSEIN E H, MAHDY M A, BLONDIN M J, et al Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems[J]. Expert Systems with Applications, 2021, 174: 114689
doi: 10.1016/j.eswa.2021.114689
|
9 |
LI S, CHEN H, WANG M, et al Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300- 323
doi: 10.1016/j.future.2020.03.055
|
10 |
GAO W, LIU S A modified artificial bee colony algorithm[J]. Computers and Operations Research, 2012, 39 (3): 687- 697
doi: 10.1016/j.cor.2011.06.007
|
11 |
YILDIZ B S, PHOLDEE N, BUREERAT S, et al Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems[J]. Engineering with Computers, 2022, 38 (5): 4207- 4219
doi: 10.1007/s00366-021-01368-w
|
12 |
HEIDARI A A, MIRJALILI S, FARIS H, et al Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849- 872
doi: 10.1016/j.future.2019.02.028
|
13 |
MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46- 61
doi: 10.1016/j.advengsoft.2013.12.007
|
14 |
MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|