Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1698-1707    DOI: 10.3785/j.issn.1008-973X.2025.08.017
计算机技术、控制工程、通信技术     
用于多无人机协同路径规划的改进黏菌蜂群算法
熊慧1,2(),葛邦鲁1,2,刘近贞1,2,王家兴3
1. 天津工业大学 控制科学与工程学院,天津 300387
2. 天津工业大学 电气装备智能控制天津市重点实验室,天津 300387
3. 中国航空工业集团公司 沈阳飞机设计研究所,辽宁 沈阳 110000
Improved slime mould bee colony algorithm for multi-UAVs cooperative path planning
Hui XIONG1,2(),Banglu GE1,2,Jinzhen LIU1,2,Jiaxing WANG3
1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China
2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
3. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110000, China
 全文: PDF(1930 KB)   HTML
摘要:

针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC). 建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径. 采用佳点集策略和非线性收敛因子,对黏菌算法进行改进,在增加种群多样性的同时,提高算法的收敛速度. 对全局最优个体采用精英反向学习策略,提高种群质量. 在人工蜂群探索能力的基础上,引入全局最优位置引导,提高黏菌算法的开发能力. 通过对14个测试函数和CEC2017测试函数集中部分函数的寻优对比分析可知,ISMABC算法的寻优能力和收敛速度都有了较大的提升. 为了验证ISMABC算法的可行性,采用所提算法求解多无人机协同路径规划问题. 通过对比分析可知,利用ISMABC算法能够为每架UAV规划出满足约束且代价最小的路径.

关键词: 多无人机路径规划黏菌算法人工蜂群算法佳点集非线性收敛因子    
Abstract:

An improved slime mold algorithm with artificial bee colony (ISMABC) was proposed aiming at the problem of cooperative path planning for multiple unmanned aerial vehicles (UAVs). A path planning cost model was established, and the path planning problem in a three-dimensional environment was transformed into an optimization problem by introducing a fitness function and constraint conditions, which was solved by the proposed algorithm to obtain the optimal path. The slime mold algorithm was improved by employing the good point set strategy and a nonlinear convergence factor. Then the population diversity was increased, and the convergence speed of the algorithm was accelerated. An elite opposition-based learning strategy was applied to the global best individual in order to enhance population quality. A global best position guidance was introduced based on the exploration capability of the artificial bee colony in order to improve the exploitation capability of the slime mold algorithm. Comparative analysis of optimization on 14 test functions and some functions from the CEC2017 test suite showed that the optimization ability and convergence speed of the ISMABC algorithm were significantly enhanced. The algorithm was applied to solve the problem of cooperative path planning for multiple UAVs in order to verify the feasibility of the ISMABC algorithm. Comparative analysis shows that the ISMABC algorithm can be used to plan paths with minimal cost that satisfies the constraints for each UAV.

Key words: multiple UAVs    path planning    slime mould algorithm    artificial bee colony algorithm    good point set    nonlinear convergence factor
收稿日期: 2024-03-11 出版日期: 2025-07-28
:  TP 393  
基金资助: 国家自然科学基金资助项目(62071329).
作者简介: 熊慧(1978—),女,教授,从事多模态生理信号检测与分析、多智能体协同控制与优化的研究. orcid.org/0000-0001-8940-5626. E-mail:xionghui@tiangong.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
熊慧
葛邦鲁
刘近贞
王家兴

引用本文:

熊慧,葛邦鲁,刘近贞,王家兴. 用于多无人机协同路径规划的改进黏菌蜂群算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1698-1707.

Hui XIONG,Banglu GE,Jinzhen LIU,Jiaxing WANG. Improved slime mould bee colony algorithm for multi-UAVs cooperative path planning. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1698-1707.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1698

图 1  路径规划的原理图
图 2  航向角变化的示意图
图 3  ISMABC算法的流程图
算法函数最优值平均值方差耗时均值/s
HHO$ {F_1} $4.21×10?753.49×10?581.16×10?1133.07×10?2
$ {F_2} $1.95×10?393.49×10?313.33×10?603.09×10?2
$ {F_3} $3.67×10?708.87×10?437.78×10?830.151
$ {F_4} $4.22×10?399.78×10?312.44×10?593.76×10?2
$ {F_5} $1.23×10?52.55×10?47.59×10?86.01×10?2
ABC$ {F_1} $2.65×10?221.51×10?181.43×10?690.192
$ {F_2} $2.20×10?222.77×10?193.43×10?420.197
$ {F_3} $2.22×10?292.35×10?252.21×10?540.304
$ {F_4} $2.99×10?187.12×10?153.32×10?390.199
$ {F_5} $0.2120.5772.82×10?20.208
GWO$ {F_1} $5.09×10?174.35×10?154.33×10?294.02×10?2
$ {F_2} $2.05×10?104.19×10?92.25×10?144.09×10?2
$ {F_3} $5.69×10?40.6152.30×10?28.93×10?2
$ {F_4} $5.53×10?58.75×10?43.44×10?74.01×10?2
$ {F_5} $9.95×10?43.60×10?32.40×10?64.63×10?2
WOA$ {F_1} $5.21×10?532.36×10?414.39×10?801.44×10-2
$ {F_2} $1.12×10?352.77×10?292.57×10?401.52×10-2
$ {F_3} $3.04×1046.45×1042.73×1086.36×10-2
$ {F_4} $3.60×10252.37.00×1021.44×10-2
$ {F_5} $7.07×10?55.80×10?34.50×10?52.07×10-2
SSA$ {F_1} $01.09×10?691.16×10?1369.31×10?2
$ {F_2} $01.26×10?341.60×10?669.49×10?2
$ {F_3} $01.38×10?591.29×10?1160.191
$ {F_4} $02.13×10?322.25×10?629.28×10?2
$ {F_5} $1.50×10?54.18×10?41.05×10?70.105
SMA$ {F_1} $07.77×10?22200.120
$ {F_2} $1.00×10?1966.40×10?994.75×10?1900.120
$ {F_3} $08.09×10?23900.170
$ {F_4} $4.21×10?2169.06×10?1128.21×10?2210.120
$ {F_5} $7.77×10?52.74×10?44.81×10?80.129
ISMABC$ {F_1} $0000.113
$ {F_2} $0000.115
$ {F_3} $0000.216
$ {F_4} $0000.113
$ {F_5} $2.01×10-78.65×10-55.52×10-90.127
表 1  单峰函数的测试结果
算法函数最优值平均值方差耗时均值/s
HHO$ {F_8} $?1.26×104?1.25×1042.92×1056.25×10?2
$ {F_9} $0005.10×10?2
$ {F_{10}} $8.88×10?168.88×10?1605.22×10?2
$ {F_{11}} $0006.22×10?2
ABC$ {F_8} $?6.28×103?4.84×1031.50×1052.21×10?2
$ {F_9} $1.94×1022.42×1022.70×1020.211
$ {F_{10}} $3.905.310.5130.211
$ {F_{11}} $1.432.080.1210.219
GWO$ {F_8} $?8.42×103?5.85×1038.44×1054.77×10?2
$ {F_9} $2.05×10?126.9728.24.30×10?2
$ {F_{10}} $2.25×10?91.15×10?84.08×10?174.33×10?2
$ {F_{11}} $2.66×10?156.00×10?31.19×10?44.81×10?2
WOA$ {F_8} $?1.26×104?1.01×1043.32×1062.14×10?2
$ {F_9} $01.00×10?21.10×10?21.67×10?2
$ {F_{10}} $8.88×10?166.32×10?151.13×10?291.76×10?2
$ {F_{11}} $01.40×10?24.00×10?32.18×10?2
SSA$ {F_8} $?1.26×104?8.64×1036.05×1060.106
$ {F_9} $0009.66×10?2
$ {F_{10}} $8.88×10?168.88×10?1609.83×10?2
$ {F_{11}} $0000.106
SMA$ {F_8} $?1.26×104?1.26×1042.270.131
$ {F_9} $0000.124
$ {F_{10}} $8.88×10?168.88×10?1600.126
$ {F_{11}} $0000.130
ISMABC$ {F_8} $?1.26×104?1.26×1043.70×10?20.132
$ {F_9} $0000.117
$ {F_{10}} $8.88×10?168.88×10?1600.119
$ {F_{11}} $0000.128
表 2  多峰函数的测试结果
算法函数最优值平均值方差耗时均值/s
HHO$ {F_{14}} $0.9981.561.524.02×10?1
$ {F_{15}} $?1.03?1.032.90×10?163.68×10?2
$ {F_{21}} $?10.1?5.230.8374.92×10?2
$ {F_{22}} $?10.3?5.270.8925.53×10?2
$ {F_{23}} $?5.13?4.990.3606.28×10?2
ABC$ {F_{14}} $0.9981.017.00×10?30.519
$ {F_{15}} $?1.03?1.035.09×10?130.192
$ {F_{21}} $?10.2?9.452.700.210
$ {F_{22}} $?10.4?10.20.7130.218
$ {F_{23}} $?10.5?10.53.86×10?80.227
GWO$ {F_{14}} $0.9984.8417.60.159
$ {F_{15}} $?1.03?1.033.19×10?151.36×10?2
$ {F_{21}} $?10.2?9.045.541.98×10?2
$ {F_{22}} $?10.410.40.8262.25×10?2
$ {F_{23}} $?10.5?1.02×1012.212.53×10?2
WOA$ {F_{14}} $0.9983.2610.30.158
$ {F_{15}} $?1.03?1.037.56×10?171.28×10?2
$ {F_{21}} $?10.2?7.707.741.72×10?2
$ {F_{22}} $?10.4?7.248.812.00×10?2
$ {F_{23}} $?10.5?6.6310.32.28×10?2
SSA$ {F_{14}} $0.9989.2422.60.320
$ {F_{15}} $?1.03?1.037.08×10?172.99×10?2
$ {F_{21}} $?10.2?9.931.004.33×10?2
$ {F_{22}} $?10.4?10.30.6584.85×10?2
$ {F_{23}} $?10.5?10.50.2825.47×10?2
SMA$ {F_{14}} $0.9980.9983.29×10?230.206
$ {F_{15}} $?1.03?1.036.22×10?175.79×10?2
$ {F_{21}} $?10.2?10.23.85×10?76.85×10?2
$ {F_{22}} $?10.4?10.48.64×10?77.13×10?2
$ {F_{23}} $?10.5?10.53.25×10?77.45×10?2
ISMABC$ {F_{14}} $0.9980.9982.18×10?280.359
$ {F_{15}} $?1.03?1.032.65×10?206.03×10?2
$ {F_{21}} $?10.2?10.27.85×10?97.64×10?2
$ {F_{22}} $?10.4?10.43.61×10?98.12×10?2
$ {F_{23}} $?10.5?10.59.01×10?98.77×10?2
表 3  固定维度函数的测试结果
函数WOASSAHHOSMAISMABC
平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差
CEC011.73×10105.77×1091.23×10105.78×1092.19×1072.40×1075.38×1061.56×1075.98×1027.72×102
CEC036.81×1049.62×1034.62×1041.79×1046.41×1041.58×1044.58×1049.99×1032.02×1042.56×103
CEC066.06×1026.516.93×1021.216.39×10218.66.24×1028.636.13×1021.57×10?13
CEC071.53×10362.31.73×10350.31.98×10251.69.42×10251.97.69×1021.85
CEC129.31×1081.95×1091.16×1091.86×1091.99×1061.31×1061.13×1069.47×1054.21×1052.05×105
CEC141.29×1061.97×1062.37×1042.76×1043.14×1043.79×1044.74×1045.67×1041.39×1056.21×104
CEC191.09×1071.13×1071.45×1061.92×1068.65×1037.32×1039.73×1031.97×1043.91×1031.85×103
CEC266.13×1036.25×1027.18×1031.64×1035.48×1031.23×1032.89×10379.53.31×1032.17×102
CEC283.92×1032.99×1024.48×1034.27×1023.46×10339.13.27×1031.29×1033.20×10313.9
CEC304.86×1073.66×1071.44×1078.41×1062.94×1043.83×1041.23×1052.67×1057.16×1031.49×103
表 4  CEC2017测试集算法的比较结果
图 4  ISMABC 及6种对比算法的收敛曲线
UAV起点坐标目标点坐标
UAV1(50, 150, 50)(900, 900, 50)
UAV2(150, 150, 50)(900, 900, 50)
UAV3(150, 50, 50)(900, 900, 50)
表 5  UAV起点和目标点
环境威胁位置坐标rh
场景21(800, 300)180200
2(400, 200)120200
3(300, 700)220200
4(800, 850)80200
场景31(400, 500)60200
2(800, 300)80200
3(400, 200)100200
4(300, 700)90200
5(800, 850)70200
6(200, 400)60200
7(800, 500)50200
8(600, 800)70200
9(900, 650)50200
10(550, 450)70200
表 6  威胁源的参数
图 5  场景1的路径规划结果
场景1l/mT/s
UAV11 174.3[58.715, 117.43]
UAV21 202.8[60.14, 120.28]
UAV31 172.9[58.645, 117.29]
表 7  场景1的路径长度和到达时间
图 6  场景1的数据结果
图 7  场景2的路径规划结果
场景2l/mT/s
UAV11 235.6[61.78, 123.56]
UAV21 235.5[61.775, 123.55]
UAV31 235.7[61.785, 123.57]
表 8  场景2的路径长度和到达时间
图 8  场景2的数据结果
图 9  场景3的路径规划结果
图 10  场景3的数据结果
场景3l/mT/s
UAV11 453.8[72.69, 145.38]
UAV21 228.1[61.405, 122.81]
UAV31 228.3[61.415, 122.83]
表 9  场景3的路径长度和到达时间
图 11  场景3中3架UAV俯仰角与航向角的变化幅度
1 LIANG Y, QI D, YAN J Z Adaptive leader–follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33 (11): 2972- 2988
doi: 10.1016/j.cja.2020.03.020
2 HASSANALIAN M, ABDELKEFI A Classifications, applications, and design challenges of drones: a review[J]. Progress in Aerospace Sciences, 2017, 91: 99- 131
doi: 10.1016/j.paerosci.2017.04.003
3 DEWANGAN R K, SHUKLA A, GODFREY W W Three-dimensional path planning using grey wolf optimizer for UAVs[J]. Applied Intelligence, 2019, 49: 2201- 2217
doi: 10.1007/s10489-018-1384-y
4 DE P, DUNNE E J, GHOSH J B, et al The discrete time-cost tradeoff problem revisited[J]. European Journal of Operational Research, 1995, 81 (2): 225- 238
doi: 10.1016/0377-2217(94)00187-H
5 ZHANG X, LU X, JIA S, et al A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning[J]. Applied Soft Computing, 2018, 70: 371- 388
doi: 10.1016/j.asoc.2018.05.030
6 QU C, GAI W, ZHANG J, et al A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning[J]. Knowledge-Based Systems, 2020, 194: 105530
doi: 10.1016/j.knosys.2020.105530
7 DUAN H, YU Y, ZHANG X, et al Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm[J]. Simulation Modelling Practice and Theory, 2010, 18 (8): 1104- 1115
doi: 10.1016/j.simpat.2009.10.006
8 HOUSSEIN E H, MAHDY M A, BLONDIN M J, et al Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems[J]. Expert Systems with Applications, 2021, 174: 114689
doi: 10.1016/j.eswa.2021.114689
9 LI S, CHEN H, WANG M, et al Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300- 323
doi: 10.1016/j.future.2020.03.055
10 GAO W, LIU S A modified artificial bee colony algorithm[J]. Computers and Operations Research, 2012, 39 (3): 687- 697
doi: 10.1016/j.cor.2011.06.007
11 YILDIZ B S, PHOLDEE N, BUREERAT S, et al Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems[J]. Engineering with Computers, 2022, 38 (5): 4207- 4219
doi: 10.1007/s00366-021-01368-w
12 HEIDARI A A, MIRJALILI S, FARIS H, et al Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849- 872
doi: 10.1016/j.future.2019.02.028
13 MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46- 61
doi: 10.1016/j.advengsoft.2013.12.007
14 MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
[1] 张静,王祎,陈子龙,李云松. 多目标多智能体路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1689-1697.
[2] 叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.
[3] 郝琨,孟璇,赵晓芳,李志圣. 融合自适应势场法和深度强化学习的三维水下AUV路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1451-1461.
[4] 廖榆信,王伟,滕卫明,贺海晏,王战,王进. 基于多目标约束的无人机光顺路径生成全局优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1481-1491.
[5] 赵威,张万枝,侯加林,侯瑞,李玉华,赵乐俊,程进. 基于改进深度强化学习算法的农业机器人路径规划[J]. 浙江大学学报(工学版), 2025, 59(7): 1492-1503.
[6] 于少猛,闫铭,王鹏飞,朱建锡,杨欣. 丘陵山地果园植保无人机三维路径规划[J]. 浙江大学学报(工学版), 2025, 59(3): 635-642.
[7] 薛雅丽,李寒雁,欧阳权,崔闪,洪君. 战场环境下遗传黏菌算法的多机协同任务分配[J]. 浙江大学学报(工学版), 2024, 58(8): 1748-1756.
[8] 刘宇庭,郭世杰,唐术锋,张学炜,李田田. 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报(工学版), 2024, 58(2): 360-369.
[9] 陈丽芳,杨火根,陈智超,杨杰. B样条技术与遗传算法融合的全局路径规划[J]. 浙江大学学报(工学版), 2024, 58(12): 2520-2530.
[10] 温夏露,黄鹤,王会峰,杨澜,高涛. 基于秃鹰搜索算法优化的三维多无人机低空突防[J]. 浙江大学学报(工学版), 2024, 58(10): 2020-2030.
[11] 靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.
[12] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[13] 戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.
[14] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[15] 刘洁,董献洲,韩维,王昕炜,刘纯,贾珺. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838.