计算机技术 |
|
|
|
|
高温混合障碍空间中的移动机器人路径规划 |
吴敬理(),伊国栋*(),裘乐淼,张树有 |
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 |
|
Path planning of mobile robots in mixed obstacle space with high temperature |
Jing-li WU(),Guo-dong YI*(),Le-miao QIU,Shu-you ZHANG |
State Key Laboratory of Fluid Power and Electromechanical Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
Jing-li WU,Guo-dong YI,Le-miao QIU,Shu-you ZHANG. Path planning of mobile robots in mixed obstacle space with high temperature. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1806-1814.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.002
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1806
|
1 |
MAC T T, COPOT C, TRAN D T, et al Heuristic approaches in robot path planning: a survey[J]. Robotics and Autonomous Systems, 2016, 86: 13- 28
doi: 10.1016/j.robot.2016.08.001
|
2 |
OROZOCO-ROSAS U, MONTIEL O, SEPULVEDA R Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing, 2019, 77: 236- 251
doi: 10.1016/j.asoc.2019.01.036
|
3 |
NIRMAL S N, CHATTERJEE A, CHATTERJEE A, et al A two-layered subgoal based mobile robot navigation algorithm with vision system and IR sensors[J]. Measurement, 2011, 44 (4): 620- 641
doi: 10.1016/j.measurement.2010.12.002
|
4 |
ZHANG Y, GONG D, ZHANG J Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing, 2013, 103: 172- 185
doi: 10.1016/j.neucom.2012.09.019
|
5 |
NAZARAHARI M, KHANMIRZA E, DOOSTIE S Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications, 2019, 115: 106- 120
doi: 10.1016/j.eswa.2018.08.008
|
6 |
TAVARES R S, MARTINS T C, TSUZUKI M S G Simulated annealing with adaptive neighborhood: a case study in off-line robot path planning[J]. Expert Systems with Applications, 2011, 38 (4): 2951- 2965
doi: 10.1016/j.eswa.2010.08.084
|
7 |
陈智. 基于栅格法多目标路径规划研究[D]. 湖北: 华中科技大学, 2015. CHEN Zhi. Study on the method of multi-objective path planning based on grid[D]. Hubei: Huazhong University of Science and Technology, 2015.
|
8 |
范江波, 王彧, 郑昆, 等 基于改进萤火虫算法的移动机器人多目标路径规划[J]. 济南大学学报: 自然科学版, 2020, 34 (5): 459- 469 FAN Jiang-bo, WANG Yu, ZHENG Kun, et al Multi-objective path planning for mobile robot based on improved firefly algorithm[J]. Journal of University of Jinan: Science and Technology, 2020, 34 (5): 459- 469
|
9 |
WANG B, LI S, GUO J, et al Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm[J]. Neurocomputing, 2018, 282: 42- 51
doi: 10.1016/j.neucom.2017.12.015
|
10 |
邹春明, 张云雷, 徐言民, 等 基于NSGA-Ⅱ算法的AUV三维全局路径规划[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45 (1): 49- 53 ZOU Chun-ming, ZHANG Yun-lei, XU Yan-min, et al Three-dimensional global path planning based on NSGA-II algorithm for AUV[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2021, 45 (1): 49- 53
|
11 |
PEI Q, HAO L, CHEN C, et al Minimum collective dose based optimal evacuation path-planning method under nuclear accidents[J]. Annals of Nuclear Energy, 2020, 147: 107644
doi: 10.1016/j.anucene.2020.107644
|
12 |
于德春. 基于离散数据的火灾温度场构建算法与应用研究[D]. 江苏: 中国矿业大学, 2020. YU De-chun. The construction algorithm and application research of fire temperature field based on discrete data[D]. Jiangsu: China University of Mining and Technology, 2020.
|
13 |
任泽霈. 热工手册[M]. 北京: 机械工业出版社, 2002: 45.
|
14 |
陈曦, 葛少成, 张兴华, 等 选煤厂暗道多热源叠加作用对通风排尘特性的影响[J]. 中国安全科学学报, 2017, 27 (11): 150- 156 CHEN Xi, GE Shao-cheng, ZHANG Xing-hua, et al Analysis of multithermo-sources superimposed effect onventilation dedusting in coal preparation plant[J]. China Safety Science Journal, 2017, 27 (11): 150- 156
|
15 |
徐力, 刘云华, 王启富 自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用, 2020, 56 (18): 36- 41 XU Li, LIU Yun-hua, WANG Qi-fu Application of adaptive genetic algorithm in robot path planning[J]. Computer Engineering and Applications, 2020, 56 (18): 36- 41
doi: 10.3778/j.issn.1002-8331.1912-0062
|
16 |
肖闪丽, 王宇嘉, 聂善坤 动态邻居维度学习的多目标粒子群算法[J]. 计算机工程与应用, 2017, 53 (20): 31- 37 XIAO Shan-li, WANG Yu-jia, NIE Shan-kun Multi-objective particle swarm optimization based on dynamic neighborhood for dimensional learning[J]. Computer Engineering and Applications, 2017, 53 (20): 31- 37
doi: 10.3778/j.issn.1002-8331.1606-0137
|
17 |
DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach part I: solving problems with box constraints[J]. IEEE Strategy on Evolutionary Computation, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
|
18 |
马硕. 基于非支配排序遗传算法的多目标车辆路径规划研究[D]. 辽宁: 大连海事大学, 2019. MA Shuo. Multi-objective vehicle route planning based on non-dominated sorting genetic algorithm[D]. Liaoning: Dalian Maritime University, 2019.
|
19 |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
|
20 |
CAO J, LI Y, ZHAO S C. Genetic-algorithm-based global path planning for AUV[C]// Proceedings of the 9th International Symposium on Computational Intelligence and Design. Hangzhou: IEEE, 2016: 79-82.
|
21 |
孙波, 姜平, 周根荣, 等 基于改进遗传算法的AGV路径规划[J]. 计算机工程与设计, 2020, 41 (2): 550- 556 SUN Bo, JIANG Ping, ZHOU Gen-rong, et al AGV optimal path planning based on improved genetical algorithm[J]. Computer Engineering and Design, 2020, 41 (2): 550- 556
|
22 |
曹海涛. 基于改进NSGA-Ⅱ的多目标柔性作业车间调度问题研究[D]. 浙江: 浙江工业大学, 2019. CAO Hai-tao. Research on multi-objective flexible job shop scheduling problem based on improved NSGA-II[D]. Zhejiang: Zhejiang University of Technology, 2019.
|
23 |
雷永锋, 彭浩, 孙莉莉 基于正弦式自适应遗传算法的堆垛机路径优化研究[J]. 机械与电子, 2019, 37 (9): 59- 63 LEI Yong-feng, PENG Hao, SUN Li-li Research on path optimization of stacker based on sinusoidal adaptive genetic algorithm[J]. Machinery and Electronics, 2019, 37 (9): 59- 63
doi: 10.3969/j.issn.1001-2257.2019.09.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|