|
|
基于多轴3D打印的三维自支撑桁架结构优化方法 |
叶俊1,2( ),肖志斌2,3,林晓阳1,全冠1,王震4,王跃达1,何江飞6,赵阳5 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江大学平衡建筑研究中心,浙江 杭州 310028 3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028 4. 浙大城市学院 工程学院,浙江 杭州 310015 5. 绍兴文理学院 土木工程学院,浙江 绍兴 312000 6. 中国能源建设集团浙江省电力设计院有限公司,浙江 杭州 310012 |
|
Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing |
Jun YE1,2( ),Zhibin XIAO2,3,Xiaoyang LIN1,Guan QUAN1,Zhen WANG4,Yueda WANG1,Jiangfei HE6,Yang ZHAO5 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China 3. The Architectural Design & Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China 4. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China 5. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China 6. China Energy Engineering Group Zhejiang Electric Power Design Institute Limited Company, Hangzhou 310012, China |
引用本文:
叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.
Jun YE,Zhibin XIAO,Xiaoyang LIN,Guan QUAN,Zhen WANG,Yueda WANG,Jiangfei HE,Yang ZHAO. Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1333-1343.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.001
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1333
|
1 |
PAJONK A, PRIETO A, BLUM U, et al Multi-material additive manufacturing in architecture and construction: a review[J]. Journal of Building Engineering, 2022, 45: 103603
doi: 10.1016/j.jobe.2021.103603
|
2 |
MADHAVADAS V, SRIVASTAVA D, CHADHA U, et al A review on metal additive manufacturing for intricately shaped aerospace components[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 39: 18- 36
doi: 10.1016/j.cirpj.2022.07.005
|
3 |
SALMI M Additive manufacturing processes in medical applications[J]. Materials, 2021, 14 (1): 191
doi: 10.3390/ma14010191
|
4 |
LIU B, SHEN H, ZHOU Z, et al Research on support-free WAAM based on surface/interior separation and surface segmentation[J]. Journal of Materials Processing Technology, 2021, 297: 117240
doi: 10.1016/j.jmatprotec.2021.117240
|
5 |
JIANG J, NEWMAN S T, ZHONG R Y A review of multiple degrees of freedom for additive manufacturing machines[J]. International Journal of Computer Integrated Manufacturing, 2021, 34 (2): 195- 211
doi: 10.1080/0951192X.2020.1858510
|
6 |
LI Y, HE D, YUAN S, et al Vector field-based curved layer slicing and path planning for multi-axis printing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102362
doi: 10.1016/j.rcim.2022.102362
|
7 |
DAI C, WANG C C L, WU C, et al Support-free volume printing by multi-axis motion[J]. ACM Transactions on Graphics, 2018, 37 (4): 1- 14
|
8 |
XU K, LI Y, CHEN L, et al Curved layer based process planning for multi-axis volume printing of freeform parts[J]. Computer-Aided Design, 2019, 114: 51- 63
doi: 10.1016/j.cad.2019.05.007
|
9 |
LI Y M, HE D, WANG X Y, et al. Geodesic distance field-based curved layer volume decomposition for multi-axis support-free printing [EB/OL]. (2020–03–12)[2024–02–20]. https://arxiv.org/pdf/2003.05938.
|
10 |
BI D, XIE F, TANG K Generation of efficient iso-planar printing path for multi-axis FDM printing[J]. Journal of Manufacturing and Materials Processing, 2021, 5 (2): 59
doi: 10.3390/jmmp5020059
|
11 |
王铮, 赵东标 FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42 (10): 1673- 1677 WANG Zheng, ZHAO Dongbiao Study on elimination-reduction algorithm of support in five-axis 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (10): 1673- 1677
|
12 |
MICHELL A G M The limits of economy of material in frame-structures[J]. Philosophical Magazine, 1904, 8 (47): 589- 597
|
13 |
BENDSØE M P, KIKUCHI N Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197- 224
doi: 10.1016/0045-7825(88)90086-2
|
14 |
QUERIN O M, YOUNG V, STEVEN G P, et al Computational efficiency and validation of bi-directional evolutionary structural optimisation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189 (2): 559- 573
doi: 10.1016/S0045-7825(99)00309-6
|
15 |
ALLAIRE G, JOUVE F, TOADER A M Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194 (1): 363- 393
doi: 10.1016/j.jcp.2003.09.032
|
16 |
ZHANG W, YUAN J, ZHANG J, et al A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53 (6): 1243- 1260
doi: 10.1007/s00158-015-1372-3
|
17 |
ZHANG W, ZHANG J, GUO X Lagrangian description based topology optimization: a revival of shape optimization[J]. Journal of Applied Mechanics, 2016, 83 (4): 041010
doi: 10.1115/1.4032432
|
18 |
ZHANG W, YANG W, ZHOU J, et al Structural topology optimization through explicit boundary evolution[J]. Journal of Applied Mechanics, 2016, 84 (1): 011011
|
19 |
ZHANG W, CHEN J, ZHU X, et al Explicit three dimensional topology optimization via moving morphable void (MMV) approach[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 590- 614
doi: 10.1016/j.cma.2017.05.002
|
20 |
DORN W S Automatic design of optimal structures[J]. Journal de Mecanique, 1964, 3 (6): 25- 52
|
21 |
GILBERT M, TYAS A Layout optimization of large-scale pin-jointed frames[J]. Engineering Computations, 2003, 20 (8): 1044- 1064
doi: 10.1108/02644400310503017
|
22 |
HE L, GILBERT M Rationalization of trusses generated via layout optimization[J]. Structural and Multidisciplinary Optimization, 2015, 52 (4): 677- 694
doi: 10.1007/s00158-015-1260-x
|
23 |
GARAIGORDOBIL A, ANSOLA R, FERNANDEZ DE BUSTOS I On preventing the dripping effect of overhang constraints in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2021, 64 (6): 4065- 4078
doi: 10.1007/s00158-021-03077-w
|
24 |
GAYNOR A T, GUEST J K Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1157- 1172
doi: 10.1007/s00158-016-1551-x
|
25 |
GARAIGORDOBIL A, ANSOLA R, SANTAMARÍA J, et al A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 58 (5): 2003- 2017
doi: 10.1007/s00158-018-2010-7
|
26 |
VAN DE VEN E, MAAS R, AYAS C, et al Continuous front propagation-based overhang control for topology optimization with additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57 (5): 2075- 2091
doi: 10.1007/s00158-017-1880-4
|
27 |
VAN DE VEN E, MAAS R, AYAS C, et al Overhang control in topology optimization: a comparison of continuous front propagation-based and discrete layer-by-layer overhang control[J]. Structural and Multidisciplinary Optimization, 2021, 64 (2): 761- 778
doi: 10.1007/s00158-021-02887-2
|
28 |
LANGELAAR M Topology optimization of 3D self-supporting structures for additive manufacturing[J]. Additive Manufacturing, 2016, 12: 60- 70
doi: 10.1016/j.addma.2016.06.010
|
29 |
LANGELAAR M An additive manufacturing filter for topology optimization of print-ready designs[J]. Structural and Multidisciplinary Optimization, 2017, 55 (3): 871- 883
doi: 10.1007/s00158-016-1522-2
|
30 |
HE L, GILBERT M, JOHNSON T, et al Conceptual design of AM components using layout and geometry optimization[J]. Computers and Mathematics with Applications, 2019, 78 (7): 2308- 2324
|
31 |
林晓阳, 叶俊, 王震, 等. 考虑悬垂约束的3D打印结构优化方法及实验研究[EB/OL]. (2023–09–05)[2024–02–20]. https://link.cnki.net/urlid/11.2595.o3.20230904.1623.006.
|
32 |
YE J, LIN X, LU H, et al Layout and geometry optimization design for 3D printing of self-supporting structures[J]. Structures, 2024, 59: 105699
doi: 10.1016/j.istruc.2023.105699
|
33 |
LU H, HE L, GILBERT M, et al Design of optimal truss components for fabrication via multi-axis additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116464
doi: 10.1016/j.cma.2023.116464
|
34 |
MOSEK. MOSEK optimization toolbox for Python (Version 10.1) [EB/OL]. (2023–05–01) [2024–02–20]. https://docs.mosek.com/latest/pythonapi/index.html.
|
35 |
WÄCHTER A, BIEGLER L T On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106 (1): 25- 57
doi: 10.1007/s10107-004-0559-y
|
36 |
HAFTKA R T, GÜRDAL Z. Elements of structural optimization [M]. [S.l.]: Springer Science and Business Media, 2012.
|
37 |
Robert McNeel and Associates. Rhinoceros 7 [EB/OL]. (2021–09–01)[2024–02–20]. https://www.rhino3d.com.
|
38 |
SMITH C J, GILBERT M, TODD I, et al Application of layout optimization to the design of additively manufactured metallic components[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1297- 1313
doi: 10.1007/s00158-016-1426-1
|
39 |
PAN Z, DING D, WU B, et al. Arc welding processes for additive manufacturing: a review [C]// Transactions on Intelligent Welding Manufacturing. [S.l.]: Springer, 2018: 3–24.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|