Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (7): 1333-1343    DOI: 10.3785/j.issn.1008-973X.2025.07.001
土木与交通工程     
基于多轴3D打印的三维自支撑桁架结构优化方法
叶俊1,2(),肖志斌2,3,林晓阳1,全冠1,王震4,王跃达1,何江飞6,赵阳5
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学平衡建筑研究中心,浙江 杭州 310028
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
4. 浙大城市学院 工程学院,浙江 杭州 310015
5. 绍兴文理学院 土木工程学院,浙江 绍兴 312000
6. 中国能源建设集团浙江省电力设计院有限公司,浙江 杭州 310012
Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing
Jun YE1,2(),Zhibin XIAO2,3,Xiaoyang LIN1,Guan QUAN1,Zhen WANG4,Yueda WANG1,Jiangfei HE6,Yang ZHAO5
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design & Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
4. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
5. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
6. China Energy Engineering Group Zhejiang Electric Power Design Institute Limited Company, Hangzhou 310012, China
 全文: PDF(3537 KB)   HTML
摘要:

三轴优化方法在3D打印角度和材料效率方面存在局限性,造成材料浪费,为此提出基于多轴3D打印的两步优化方法. 将设计域划分成若干分区,优化求解各分区的局部打印方向,使结构尽可能被打印. 当可打印性指标低于设定阈值时,同时优化结构力学性能和局部打印方向来规划打印路径,使结构的可打印性提升. 设置多个算例,验证所提方法的有效性. 结果表明,相比传统的三轴打印算法,所提方法能够充分利用多轴3D打印的灵活性,使材料体积增加更少,打印结构设计结果更优,结构的可打印性得到有效提升.

关键词: 多轴3D打印结构优化自支撑结构打印路径规划可打印性指标    
Abstract:

A two-step optimization method based on multi-axis 3D printing was proposed, as the three-axis optimization method has limitations in 3D printing angles and material efficiency, leading to material waste. The design domain was divided into several partitions, and the local printing direction of each partition was solved optimally to maximize the printability of the structure. When the printability index was below the set threshold, the printability of the structure was improved by simultaneously optimizing the structural mechanical properties and the local printing directions to plan the printing path. The effectiveness of the proposed method was verified through several arithmetic examples. Results show that compared with the traditional three-axis printing algorithm, the proposed method fully utilizes the flexibility of multi-axis 3D printing, achieving less material volume increase, better design outcomes of the printed structure, and a significant improvement in the printability of the structure.

Key words: multi-axis 3D printing    structure optimization    self-supporting structures    printing path planning    printability index
收稿日期: 2024-05-15 出版日期: 2025-07-25
CLC:  TU 311.4  
基金资助: 国家自然科学基金资助项目(52208215,52078452);浙江省基础公益研究计划资助项目(LGG22E080005,LQ22E080008).
作者简介: 叶俊(1987—),男,研究员,从事金属3D打印研究. orcid.org/0000-0002-6857-7450. E-mail:jun_ye@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
叶俊
肖志斌
林晓阳
全冠
王震
王跃达
何江飞
赵阳

引用本文:

叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.

Jun YE,Zhibin XIAO,Xiaoyang LIN,Guan QUAN,Zhen WANG,Yueda WANG,Jiangfei HE,Yang ZHAO. Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1333-1343.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.001        https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1333

图 1  布局、几何优化的工作流程
图 2  构件打印方向识别图示
图 3  设计域分区图示
图 4  局部打印方向投影示意图
图 5  投影面的悬垂违反值
图 6  打印面连续性约束
图 7  打印旋转角投影
图 8  同层中分区边界位置变量对优化过程的影响
图 9  基于多轴3D打印的自支撑桁架结构优化方法的流程图
图 10  结构悬垂角对打印质量的影响
图 11  多轴打印中的碰撞问题
图 12  旋转悬臂梁算例优化结果
图 13  旋转悬臂梁的打印切片路径
图 14  悬臂梁算例优化结果
图 15  双力桁架算例优化结果
图 16  多轴打印系统
图 17  打印模型的切片过程
图 18  模型打印过程的照片
1 PAJONK A, PRIETO A, BLUM U, et al Multi-material additive manufacturing in architecture and construction: a review[J]. Journal of Building Engineering, 2022, 45: 103603
doi: 10.1016/j.jobe.2021.103603
2 MADHAVADAS V, SRIVASTAVA D, CHADHA U, et al A review on metal additive manufacturing for intricately shaped aerospace components[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 39: 18- 36
doi: 10.1016/j.cirpj.2022.07.005
3 SALMI M Additive manufacturing processes in medical applications[J]. Materials, 2021, 14 (1): 191
doi: 10.3390/ma14010191
4 LIU B, SHEN H, ZHOU Z, et al Research on support-free WAAM based on surface/interior separation and surface segmentation[J]. Journal of Materials Processing Technology, 2021, 297: 117240
doi: 10.1016/j.jmatprotec.2021.117240
5 JIANG J, NEWMAN S T, ZHONG R Y A review of multiple degrees of freedom for additive manufacturing machines[J]. International Journal of Computer Integrated Manufacturing, 2021, 34 (2): 195- 211
doi: 10.1080/0951192X.2020.1858510
6 LI Y, HE D, YUAN S, et al Vector field-based curved layer slicing and path planning for multi-axis printing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102362
doi: 10.1016/j.rcim.2022.102362
7 DAI C, WANG C C L, WU C, et al Support-free volume printing by multi-axis motion[J]. ACM Transactions on Graphics, 2018, 37 (4): 1- 14
8 XU K, LI Y, CHEN L, et al Curved layer based process planning for multi-axis volume printing of freeform parts[J]. Computer-Aided Design, 2019, 114: 51- 63
doi: 10.1016/j.cad.2019.05.007
9 LI Y M, HE D, WANG X Y, et al. Geodesic distance field-based curved layer volume decomposition for multi-axis support-free printing [EB/OL]. (2020–03–12)[2024–02–20]. https://arxiv.org/pdf/2003.05938.
10 BI D, XIE F, TANG K Generation of efficient iso-planar printing path for multi-axis FDM printing[J]. Journal of Manufacturing and Materials Processing, 2021, 5 (2): 59
doi: 10.3390/jmmp5020059
11 王铮, 赵东标 FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42 (10): 1673- 1677
WANG Zheng, ZHAO Dongbiao Study on elimination-reduction algorithm of support in five-axis 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (10): 1673- 1677
12 MICHELL A G M The limits of economy of material in frame-structures[J]. Philosophical Magazine, 1904, 8 (47): 589- 597
13 BENDSØE M P, KIKUCHI N Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197- 224
doi: 10.1016/0045-7825(88)90086-2
14 QUERIN O M, YOUNG V, STEVEN G P, et al Computational efficiency and validation of bi-directional evolutionary structural optimisation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189 (2): 559- 573
doi: 10.1016/S0045-7825(99)00309-6
15 ALLAIRE G, JOUVE F, TOADER A M Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194 (1): 363- 393
doi: 10.1016/j.jcp.2003.09.032
16 ZHANG W, YUAN J, ZHANG J, et al A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53 (6): 1243- 1260
doi: 10.1007/s00158-015-1372-3
17 ZHANG W, ZHANG J, GUO X Lagrangian description based topology optimization: a revival of shape optimization[J]. Journal of Applied Mechanics, 2016, 83 (4): 041010
doi: 10.1115/1.4032432
18 ZHANG W, YANG W, ZHOU J, et al Structural topology optimization through explicit boundary evolution[J]. Journal of Applied Mechanics, 2016, 84 (1): 011011
19 ZHANG W, CHEN J, ZHU X, et al Explicit three dimensional topology optimization via moving morphable void (MMV) approach[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 590- 614
doi: 10.1016/j.cma.2017.05.002
20 DORN W S Automatic design of optimal structures[J]. Journal de Mecanique, 1964, 3 (6): 25- 52
21 GILBERT M, TYAS A Layout optimization of large-scale pin-jointed frames[J]. Engineering Computations, 2003, 20 (8): 1044- 1064
doi: 10.1108/02644400310503017
22 HE L, GILBERT M Rationalization of trusses generated via layout optimization[J]. Structural and Multidisciplinary Optimization, 2015, 52 (4): 677- 694
doi: 10.1007/s00158-015-1260-x
23 GARAIGORDOBIL A, ANSOLA R, FERNANDEZ DE BUSTOS I On preventing the dripping effect of overhang constraints in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2021, 64 (6): 4065- 4078
doi: 10.1007/s00158-021-03077-w
24 GAYNOR A T, GUEST J K Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1157- 1172
doi: 10.1007/s00158-016-1551-x
25 GARAIGORDOBIL A, ANSOLA R, SANTAMARÍA J, et al A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 58 (5): 2003- 2017
doi: 10.1007/s00158-018-2010-7
26 VAN DE VEN E, MAAS R, AYAS C, et al Continuous front propagation-based overhang control for topology optimization with additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57 (5): 2075- 2091
doi: 10.1007/s00158-017-1880-4
27 VAN DE VEN E, MAAS R, AYAS C, et al Overhang control in topology optimization: a comparison of continuous front propagation-based and discrete layer-by-layer overhang control[J]. Structural and Multidisciplinary Optimization, 2021, 64 (2): 761- 778
doi: 10.1007/s00158-021-02887-2
28 LANGELAAR M Topology optimization of 3D self-supporting structures for additive manufacturing[J]. Additive Manufacturing, 2016, 12: 60- 70
doi: 10.1016/j.addma.2016.06.010
29 LANGELAAR M An additive manufacturing filter for topology optimization of print-ready designs[J]. Structural and Multidisciplinary Optimization, 2017, 55 (3): 871- 883
doi: 10.1007/s00158-016-1522-2
30 HE L, GILBERT M, JOHNSON T, et al Conceptual design of AM components using layout and geometry optimization[J]. Computers and Mathematics with Applications, 2019, 78 (7): 2308- 2324
31 林晓阳, 叶俊, 王震, 等. 考虑悬垂约束的3D打印结构优化方法及实验研究[EB/OL]. (2023–09–05)[2024–02–20]. https://link.cnki.net/urlid/11.2595.o3.20230904.1623.006.
32 YE J, LIN X, LU H, et al Layout and geometry optimization design for 3D printing of self-supporting structures[J]. Structures, 2024, 59: 105699
doi: 10.1016/j.istruc.2023.105699
33 LU H, HE L, GILBERT M, et al Design of optimal truss components for fabrication via multi-axis additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116464
doi: 10.1016/j.cma.2023.116464
34 MOSEK. MOSEK optimization toolbox for Python (Version 10.1) [EB/OL]. (2023–05–01) [2024–02–20]. https://docs.mosek.com/latest/pythonapi/index.html.
35 WÄCHTER A, BIEGLER L T On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106 (1): 25- 57
doi: 10.1007/s10107-004-0559-y
36 HAFTKA R T, GÜRDAL Z. Elements of structural optimization [M]. [S.l.]: Springer Science and Business Media, 2012.
37 Robert McNeel and Associates. Rhinoceros 7 [EB/OL]. (2021–09–01)[2024–02–20]. https://www.rhino3d.com.
38 SMITH C J, GILBERT M, TODD I, et al Application of layout optimization to the design of additively manufactured metallic components[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1297- 1313
doi: 10.1007/s00158-016-1426-1
39 PAN Z, DING D, WU B, et al. Arc welding processes for additive manufacturing: a review [C]// Transactions on Intelligent Welding Manufacturing. [S.l.]: Springer, 2018: 3–24.
[1] 邢国华,陆勇健,苗鹏勇,陈思锦. 基于改进遗传算法的临时转播塔结构优化设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 469-479.
[2] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.
[3] 高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化[J]. 浙江大学学报(工学版), 2020, 54(11): 2169-2178.
[4] 闵小滕,唐志国,高钦,宋安琪,王守成. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469.
[5] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[6] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[7] 应申舜, 林绿高, 计时鸣. 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报(工学版), 2018, 52(10): 1880-1887.
[8] 宁银行, 刘闯, 干兴业. 两级式无刷混合励磁同步电机的电磁设计及分析[J]. 浙江大学学报(工学版), 2016, 50(3): 519-526.
[9] 丁渊明, 王宣银. 串联机械臂结构优化方法[J]. J4, 2010, 44(12): 2360-2364.
[10] 胡彦超 陈章位. 考虑连接动态特性的子结构综合方法[J]. J4, 2008, 42(8): 1404-1409.