Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (3): 463-469    DOI: 10.3785/j.issn.1008-973X.2019.03.007
机械工程     
基于微小通道波形扁管的圆柱电池液冷模组散热特性
闵小滕(),唐志国*(),高钦,宋安琪,王守成
合肥工业大学 机械工程学院,安徽 合肥 230009
Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube
Xiao-teng MIN(),Zhi-guo TANG*(),Qin GAO,An-qi SONG,Shou-cheng WANG
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
 全文: PDF(1070 KB)   HTML
摘要:

针对圆柱动力电池的散热特点,建立一种基于微小通道波形扁管的液冷电池模组. 采用电化学热模型对该模组的散热特性进行三维瞬态分析,通过改变波形扁管的通道数和接触角对液冷结构进行优化. 10通道的波形扁管散热优势明显,增大波形扁管的接触角可以提升液冷结构的散热效率并改善电池组温度分布均匀性. 当电池模组在35 °C环境下以1 C倍率放电时,即使质量流量低至4×10?3 kg/s,使用接触角大于40°的10通道波形扁管可将电池组表面最高温度控制在40 °C以下,同时将温差控制在5 °C以内. 在优化工况下进行实验以验证该电池模组的换热性能. 仿真结果与实验值基本一致,这验证了微小通道波形扁管的散热有效性;仿真结果可为圆柱动力电池的热管理提供参考.

关键词: 圆柱动力电池微小通道波形扁管液冷瞬态模拟结构优化    
Abstract:

A liquid cooling battery module based on mini-channel wavy tube was established considering the heat dissipation performance of cylindrical power batteries. Three-dimensional transient analysis of the heat dissipation performance was conducted for the proposed battery module by using electrochemical thermal model, and the channel quantity and contact angle of the wavy tube were changed to optimize the liquid cooling configurations. The 10-channel wavy tube shows apparent advantages; an increase in contact angle positively affects the heat dissipation efficiency of the liquid cooling configurations and improves the temperature field homogeneity of the battery module. When the battery module was discharged with 1 C rate at 35 °C, the maximum temperature and local temperature difference on the surfaces of the battery module can be respectively controlled below 40 °C and 5 °C by using the 10-channel wavy tube with a contact angle greater than 40° even at a low mass flow rate of 4×10?3 kg/s. Experiments under optimized conditions were performed to validate the heat transfer performance of the battery module. The simulated results are consistent with the experimental values, thereby corroborating the heat dissipation effectiveness of the mini-channel wavy tube. The simulated results can provide specific reference values for the thermal management of cylindrical power battery modules.

Key words: cylindrical power battery    mini-channel wavy tube    liquid cooling    transient simulation    configuration optimization
收稿日期: 2018-01-29 出版日期: 2019-03-04
CLC:  TK 124  
通讯作者: 唐志国     E-mail: minxiaoteng@mail.hfut.edu.cn;tzhiguo@hfut.edu.cn
作者简介: 闵小滕(1993—),男,硕士生,从事动力电池热管理研究. orcid.org/0000-0002-7613-6380. E-mail: minxiaoteng@mail.hfut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
闵小滕
唐志国
高钦
宋安琪
王守成

引用本文:

闵小滕,唐志国,高钦,宋安琪,王守成. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469.

Xiao-teng MIN,Zhi-guo TANG,Qin GAO,An-qi SONG,Shou-cheng WANG. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 463-469.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I3/463

图 1  18650型锂离子电池模组结构示意图
图 2  微小通道波形扁管结构示意图
参数 ρ/(kg·m?3 c/(J·kg?1·K?1 k/(W·m?1·K?1 μ/(g·m?1·s?1
电池 2 478 806 kr=1.30, kz=14.15 ?
波形扁管 2 719 871 202.4 ?
液冷工质 1 066.3 3 338 0.391 2.56
表 1  本研究用到的热物性参数
图 3  不同网格数下的电池组表面最高温度
图 4  不同通道数下电池组表面最高温度和电池组温差随冷却时间的变化
图 5  不同接触角下电池组表面最高温度和电池组温差随冷却时间的变化
图 6  被监控电池的轴面温度分布
图 7  被监控电池及热电偶位置
图 8  典型工况下电池表面温度变化的实验、仿真结果对比
1 SUI Z, WANG Z Technical and economic analysis of pure-electric vehicles based on the life-cycle cost theory[J]. International Conference on Business Management and Electronic Information, 2011, 1: 125- 129
2 袁世斐, 吴红杰, 殷承良 锂离子电池简化电化学模型: 浓度分布估计[J]. 浙江大学学报: 工学版, 2017, 51 (3): 478- 486
YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang Simplified electrochemical model for Li-ion battery: lithium concentration estimation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 478- 486
3 SCROSATI B, HASSOUN J, SUN Y Lithium-ion batteries. A look into the future[J]. Energy and Environmental Science, 2011, 4 (9): 3287- 3295
4 AIFANTIS K, HACKNEY S, KUMAR R High energy density lithium batteries: materials, engineering, applications[J]. Wiley-VCH, 2010, 53- 80
5 PANCHAL S, DINCER I, AGELIN-CHAAB M, et al Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204- 212
6 FENG X, LU L, OUYANG M, et al A 3D thermal runaway propagation model for a large format lithium-ion battery module[J]. Energy, 2016, 115 (1): 194- 208
7 WU B, YUFIT V, MARINESCU M, et al Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243 (6): 544- 554
8 GOGOANA R Internal resistance variances in lithium-ion batteries and implications in manufacturing[J]. Massachusetts Institute of Technology, 2012,
9 LIU R, CHEN J, XUN J, et al Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132 (11): 288- 297
10 PESARAN A Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110 (2): 377- 382
11 YE Y, SAW L, SHI Y, et al Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281- 291
12 CHEN D, JIANG J, KIM G, et al Comparison of different cooling methods for lithium-ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846- 854
13 JARRETT A, KIM I Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196 (23): 10359- 10368
14 JARRETT A, KIM I Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245 (1): 644- 655
15 JIN L, LEE P, KONG X, et al Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113 (1): 1786- 1794
16 PENDERGAST D, DEMAURO E, FLETCHER M, et al A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196 (2): 793- 800
17 ZHAO J, RAO Z, LI Y Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103: 157- 165
18 BASU S, HARIHARAN K, KOLAKE S, et al Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1- 13
19 RAO Z, QIAN Z, KUANG Y, et al Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514- 1522
20 HERMANN W. Liquid cooling manifold with multi-function thermal interface: US20100104938A1[P]. 2012-09-11
21 BERNARDI D, PAWLIKOWSKI E, NEWMAN J A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1):
22 ZHANG Z, JIA L, ZHAO N, et al Thermal modeling and cooling analysis of high-power lithium-ion cells[J]. Journal of Thermal Sciences, 2011, 20 (6): 570- 575
23 HE F, LI X, MA L Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72 (9): 622- 629
24 MAHAMUD R, PARK C Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196 (13): 5685- 5696
25 WU M, LIU K, WANG Y, et al Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109 (1): 160- 166
26 ZHU C, LI X, SONG L, et al Development of a theoretically based thermal model for lithium-ion battery pack[J]. Journal of Power Sources, 2013, 223 (1): 155- 164
[1] 林伟岸,郑传祥,蒋建群,凌道盛,陈云敏. 大容量超重力离心机温控缩比模型试验[J]. 浙江大学学报(工学版), 2020, 54(8): 1587-1592.
[2] 高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化[J]. 浙江大学学报(工学版), 2020, 54(11): 2169-2178.
[3] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[4] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[5] 应申舜, 林绿高, 计时鸣. 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报(工学版), 2018, 52(10): 1880-1887.
[6] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[7] 宁银行, 刘闯, 干兴业. 两级式无刷混合励磁同步电机的电磁设计及分析[J]. 浙江大学学报(工学版), 2016, 50(3): 519-526.
[8] 丁渊明, 王宣银. 串联机械臂结构优化方法[J]. J4, 2010, 44(12): 2360-2364.
[9] 胡彦超 陈章位. 考虑连接动态特性的子结构综合方法[J]. J4, 2008, 42(8): 1404-1409.