Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1880-1887    DOI: 10.3785/j.issn.1008-973X.2018.10.006
机械与能源工程     
基于模态参数验证的机床结构件优化设计
应申舜1, 林绿高2, 计时鸣1
1. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室, 浙江 杭州 310032;
2. 浙江畅尔智能装备股份有限公司, 浙江 缙云 321404
Optimization design to machine tool structures using experimental verification of modal parameters
YING Shen-shun1, LIN Lv-gao2, JI Shi-ming1
1. Ministry of Education Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou 310032, China;
2. Zhejiang CHR Intelligent Equipment Limited Company, Jinyun 321404, China
 全文: PDF(1456 KB)   HTML
摘要:

基于有限元分析和试验测试相结合的方法,研究机床结构件优化设计.以某型号拉床结构3大件之一的床台为例,建立床台实际几何形状的有限元模型,分析床台在实际工况下的变形情况和模态参数.利用LMS SCADAS Ⅲ-305振动测试设备和PolyMAX方法,得到床台在0~512 Hz频率下的自然频率、阻尼比和振型等实验模态参数.获得实验模态与分析模态振型向量的置信准则矩阵,表明有限元分析和实验结果具有较好的相关性.利用经过验证的有限元模型开展拓扑优化,根据优化结果进行床台结构的二次设计.结果表明,通过二次设计得到轻量化的床台结构,切削点处变形更小,第一阶固有频率更大,实现了更好的动态性能.

Abstract:

A hybrid approach combining experimental tests with finite element (FE) analysis for optimization of the machine tool structures was presented. A FE model of the table base with the real geometry was constructed by considering the table base of a vertical external broaching machine. The deformation and modal parameters were calculated in practical operating conditions. The experimental modal parameters including mode shapes, damping ratio and natural frequencies of the table base were examined in a frequency band of 0-512 Hz by using LMS SCADAS Ⅲ-305 system and PolyMAX method. The modal assurance criterion (MAC) value was used to analyze the correlation between the FE and experimental mode shape. Results indicated a high correlation between the experimental and numerical results. A lightweight table base structure was redesigned with a better dynamic performance from the topology optimization result based on the already correlated FE model, due to lower displacement of broaching machine at force point and higher first order natural frequency.

收稿日期: 2017-09-01 出版日期: 2018-10-11
CLC:  TH122  
基金资助:

国家自然科学基金资助项目(51175471);浙江省自然科学基金资助项目(LY14E050009);浙江省重大科技专项资助项目(2014C01058)

通讯作者: 计时鸣,男,教授.orcid.org/0000-0001-8921-2218.     E-mail: jishiming@zjut.edu.cn
作者简介: 应申舜(1978-),男,博士,从事高端拉床和机器人技术研究.orcid.org/0000-0001-9102-2499.E-mail:yss@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

应申舜, 林绿高, 计时鸣. 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报(工学版), 2018, 52(10): 1880-1887.

YING Shen-shun, LIN Lv-gao, JI Shi-ming. Optimization design to machine tool structures using experimental verification of modal parameters. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1880-1887.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.006        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1880

[1] 叶佩青, 王仁彻, 赵彤, 等. 机床整机动态特性研究进展[J]. 清华大学学报:自然科学版, 2012, 52(12):1758-1763 YE Pei-qing, WANG Ren-che, ZHAO Tong, et al. Recent research advances of whole machine tool dynamics[J]. Journal of Tsinghua University:Science and Technology, 2012, 52(12):1758-1763
[2] ZHAO L, MA J, CHEN W, et al. Lightweight design and verification of gantry machining center crossbeam based on structural bionic[J]. Journal of Bionic Engineering, 2011, 8(2):201-206.
[3] KIM D, JUNG S, LEE J, et al. Parametric study on design of composite-foam-resin concrete sandwich structures for precision machine tool structures[J]. Composite Structures, 2006, 75(1-4):408-414.
[4] HULL P, CANFIELD S. Optimal synthesis of compliant mechanisms using subdivision and commercial FEA[J]. Journal of Mechanical Design, 2006, 128(2):337-348.
[5] 王磊, 刘海涛, 金涛, 等. 一种机床固定结合面形状的拓扑设计方法[J]. 振动工程学报, 2014, 27(4):481-487 WANG Lei, LIU Hai-tao, JIN Tao, et al. A design method of fixed joint contact area topology-based equivalent model for machine tools[J]. Journal of Vibration Engineering, 2014, 27(4):481-487
[6] 戴磊, 关振群, 单菊林, 等. 机床结构三维参数化形状优化设计[J]. 机械工程学报, 2008, 44(5):152-159 DAI Lei, GUAN Zhen-qun, SHAN Ju-lin, et al. 3D parameterized shape optimization design for machine tool mechanism[J]. Chinese Journal of Mechanical Engineering, 2008, 44(5):152-159
[7] ALTINTAS Y, BRECHER C, WECK M, et al. Virtual machine tool[J]. CIRP Annals-Manufacturing Technology, 2005, 54(2):115-138.
[8] LI Bin, CAI Hui, MAO Xin-yong, et al. Estimation of CNC machine-tool dynamic parameters based on random cutting excitation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture, 2013(71):26-40.
[9] ELBESTAWI M A, VELDHUIS S C, DEIAB I M. Development of a novel modular and agile face machining technology[J]. Annals of the CIRP, 2002(49):303-308.
[10] 杨毅青, 刘强, 申江丽, 等. 基于动力学及切削特性耦合的数控机床结构设计[J]. 振动与冲击, 2013, 32(10):198-202 YANG Yi-qing, LIU Qiang, SHEN Jiang-li, et al. Machine tool structure design based on the coupling analysis of dynamics and cutting performances[J]. Journal of Vibration and Shock, 2013, 32(10):198-202
[11] GADE S, M LLER N, HERLUFSEN H, et al. Frequency domain techniques for operational modal analysis[C]//Proceedings of the 1st International Operational Modal Analysis Conference. Copenhagen, Denmark:Springer, 2005.
[12] RAINIERI C, FABBROCINO G. Operational modal analysis of civil engineering structures:an introduction and guide for applications[M]. New York:Springer, 2014:322.
[13] JACOBSEN N J, ANDERSEN P, BRINCKER R. Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis[C]//Proceedings of International Conference on Noise and Vibration Engineering. Leuven, Belgium:Katholieke Universiteit Leuven Department of Mechanical Engineering, 2006.
[14] BO Z, HAN D, XINJUN S. Modal analysis of board-level electronic package[J]. Microelectronic Engineering, 2008, 85(3):610-620.
[15] 罗震, 陈立平, 黄玉盈, 等. 连续体结构的拓扑优化设计[J]. 力学进展, 2004, 34(4):463-476 LUO Zhen, CHEN Li-ping, HUANG Yu-ying, et al. Topological optimization design for continuum structures[J]. Advances in Mechanics, 2004, 34(4):463-476
[16] 匡兵, 刘娟, 段君伟, 等. 基于改进灵敏度过滤策略的SIMP方法[J]. 计算力学学报, 2017, 34(1):81-87 KUANG Bing, LIU Juan, DUAN Jun-wei, et al. SIMP method based on modified sensitivity filtering strategy[J]. Chinese Journal of Computational Mechanics, 2017, 34(1):81-87
[17] XU Dong-kai, CHEN Jun, TANG Yu-cheng, et al. Topology optimization of die weight reduction for high-strength sheet[J]. International Journal of Mechanical Sciences, 2012(59):73-82.

[1] 朱卓悦, 徐志刚, 沈卫东, 杨得玉. 基于遗传蝙蝠算法的选择性拆卸序列规划[J]. 浙江大学学报(工学版), 2018, 52(11): 2120-2127.
[2] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.