Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1689-1697    DOI: 10.3785/j.issn.1008-973X.2025.08.016
计算机技术、控制工程、通信技术     
多目标多智能体路径规划方法
张静(),王祎,陈子龙,李云松
西安电子科技大学 空天地一体化综合业务网全国重点实验室,陕西 西安 710071
Multi-goal multi-agent path finding algorithm
Jing ZHANG(),Yi WANG,Zilong CHEN,Yunsong LI
State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
 全文: PDF(1143 KB)   HTML
摘要:

为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法. 针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲突方式,在A*算法的基础上引入安全间隔与标签的概念,使得A*算法可以规划出满足连续时间约束的最优路径. 针对多智能体路径规划问题中因碰撞检测、冲突避免造成的较大计算量,提出冲突分级策略,减少了算法求解过程中扩展的节点数量. 实验结果表明,利用所提出的算法能够求解得到更优的解决方案,且该算法具有更好的适用性;在智能体分布密集的场景下,该算法表现出更低的路径总成本和更高的求解成功率.

关键词: 多智能体系统路径规划任务分配改进A*算法冲突搜索    
Abstract:

A multi-goal multi-agent path planning algorithm was proposed to realize the efficient assignment of tasks to each agent and plan the shortest possible paths for the agents without collision with other agents. The definition of conflict between agents in continuous time and the way of conflict resolution were defined, and the concepts of safety interval and labeling were introduced based on A* algorithm aiming at the problem of low success rate due to the use of discrete time in traditional path planning algorithms. Then the A* algorithm can plan optimal paths that satisfy continuous time constraints. A conflict hierarchical strategy was proposed to reduce the number of nodes extended in the algorithm solving process aiming at the large amount of computation caused by collision detection and conflict avoidance in the multi-agent path planning problem. The experimental results show that the proposed algorithm can solve a better solution and has better applicability, with lower total path cost and higher success rate in the scenario of densely distributed agents.

Key words: multi-agent system    path finding    task assignment    improved A* algorithm    conflict search
收稿日期: 2024-05-20 出版日期: 2025-07-28
:  TP 242  
基金资助: 国家自然科学基金资助项目 (62371362).
作者简介: 张静(1980—),女,教授,从事无人系统设计的研究. orcid.org/ 0000-0002-8495-2804. E-mail:jingzhang@xidian.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张静
王祎
陈子龙
李云松

引用本文:

张静,王祎,陈子龙,李云松. 多目标多智能体路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1689-1697.

Jing ZHANG,Yi WANG,Zilong CHEN,Yunsong LI. Multi-goal multi-agent path finding algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1689-1697.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1689

图 1  结合任务分配的冲突搜索算法的基本流程
图 2  连续时间下边缘冲突与顶点冲突的示意图
图 3  随机障碍物场景与仓储场景的示意图
图 4  不同场景下算法求解的成功率
图 5  不同场景下的平均路径总成本
场景S/m
TA-CBSCBS-TA提出算法
空旷317. 3310. 52266. 12
随机障碍物488. 77476. 20427. 35
仓储436. 80427. 12393. 99
表 1  不同场景下平均路径总成本总和的统计表
$ n $$ C $/m
4邻域8邻域16邻域32邻域
427. 3424. 4524. 0723. 98
637. 4133. 4833. 1032. 92
842. 5338. 2437. 7437. 65
1050. 3345. 1744. 6344. 21
1253. 6548. 2547. 7047. 62
1462. 1054. 6754. 2153. 70
1664. 2257. 3856. 5756. 52
1867. 1560. 9360. 8860. 05
2070. 8364. 7864. 7963. 92
表 2  提出算法在不同邻域大小下的平均路径总成本统计表
$ n $T/s
4邻域8邻域16邻域32邻域
40.000 70.000 80.001 10.001 6
100.006 00.005 00.011 00.021 0
160.210 00.120 00.200 00.256 0
表 3  不同智能体数下的平均求解时间统计表
图 6  引入冲突分级后算法的平均扩展节点数与求解成功率
图 7  TA-CBS算法求解的示意图
图 8  CBS-TA算法求解的示意图
图 9  本文算法求解的示意图
1 BNAYA Z, FELNER A. Conflict-oriented windowed hierarchical cooperative A* [C]//IEEE International Conference on Robotics and Automation. New York: IEEE, 2014: 3743-3748.
2 WAGNER G, CHOSET H Subdimensional expansion for multirobot path planning[J]. Artificial Intelligence, 2015, 219 (2): 1- 24
3 SHARON G, STERN R, GOLDENBERG M, et al The increasing cost tree search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2013, 195 (2): 470- 495
4 SRINIVASAN A, HAM T, MALIK S, et al. Algorithms for discrete function manipulation [C]//IEEE International Conference on Computer-Aided Design. Washington, DC: IEEE, 1990: 92-95.
5 SHARON G, STERN R, FELNER A, et al Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219 (2): 40- 66
6 COHEN L, WAGNER G, CHAN D, et al. Rapid randomized restarts for multi-agent path finding solvers [C]// Proceedings of the International Symposium on Combinatorial Search. Richland: AAAI, 2018: 1909-1911.
7 BARER M, SHARON G, STERN R, et al. Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem [C]// Proceedings of the 21st European Conference on Artificial Intelligence. NLD: IOS Press, 2014: 961-962.
8 PEARL J, KIM J H Studies in semi-admissible heuristics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4 (4): 392- 399
9 LI J, TINKA A, KIESEL S, et al. Lifelong multi-agent path finding in large-scale warehouses [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Richland: AAAI, 2020: 1898-1900.
10 LI J, HOANG T A, LIN E, et al. Intersection coordination with priority-based search for autonomous vehicles [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 11578-11585.
11 李家碧, 韩曙光 考虑客户等级和时变路况的无人物流配送路径[J]. 浙江大学学报: 工学版, 2023, 57 (10): 2018- 2027
LI Jiabi, HAN Shuguang Unmanned logistics distribution route considering customer level and time-varying road conditions[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 2018- 2027
12 杨京帅, 杨玉娥, 李嫚嫚, 等 末端配送服务模式与路径联合优化[J]. 浙江大学学报: 工学版, 2023, 57 (5): 900- 910
YANG Jingshuai, YANG Yu’e, LI Manman, et al Joint optimization of terminal distribution service mode and distribution routing[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 900- 910
13 靳佳澳, 沈洪垚, 孙扬帆, 等 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报: 工学版, 2023, 57 (1): 21- 31
JIN Jiaao, SHEN Hongyao, SUN Yangfan, et al Single-line laser scanning path planning for wire arc and additive manufacturing[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (1): 21- 31
14 ZHONG X, LI J, KOENIG S, et al. Optimal and bounded-suboptimal multi-goal task assignment and path finding [C]// International Conference on Robotics and Automation. New York: IEEE, 2022: 10731-10737.
15 STERN R. Multi-agent path finding: an overview [C]// 5th RAAI Summer School on Artificial Intelligence. Cham: Springer, 2019: 96-115.
16 HÖNIG W, KIESEL S, TINKA A, et al. Conflict-based search with optimal task assignment [C]// Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems. Richland: AAMAS, 2018: 757-765.
17 GUY S J, KARAMOUZAS I. Guide to anticipatory collision avoidance [M]// RABIN S. Game AI Pro 360: guide to movement and pathfinding. Boca Raton: CRC Press, 2019: 159-172.
18 LI J, TINKA A, KIESEL S, et al. Lifelong multi-agent path finding in large-scale warehouses [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11272-11281.
19 YU J, LAVALLE S M Optimal multirobot path planning on graphs: complete algorithms and effective heuristics[J]. IEEE Transactions on Robotics, 2016, 32 (5): 1163- 1177
doi: 10.1109/TRO.2016.2593448
[1] 叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.
[2] 郝琨,孟璇,赵晓芳,李志圣. 融合自适应势场法和深度强化学习的三维水下AUV路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1451-1461.
[3] 廖榆信,王伟,滕卫明,贺海晏,王战,王进. 基于多目标约束的无人机光顺路径生成全局优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1481-1491.
[4] 赵威,张万枝,侯加林,侯瑞,李玉华,赵乐俊,程进. 基于改进深度强化学习算法的农业机器人路径规划[J]. 浙江大学学报(工学版), 2025, 59(7): 1492-1503.
[5] 王昱,马春荣,赵明月. 基于混合策略多目标粒子群的异构无人机协同多任务分配[J]. 浙江大学学报(工学版), 2025, 59(4): 821-831.
[6] 于少猛,闫铭,王鹏飞,朱建锡,杨欣. 丘陵山地果园植保无人机三维路径规划[J]. 浙江大学学报(工学版), 2025, 59(3): 635-642.
[7] 李勇,王跃,柳富强,孙柏青,李恺如. 护工-机器人协作养老情境下的多任务分配框架[J]. 浙江大学学报(工学版), 2025, 59(2): 375-383.
[8] 薛雅丽,李寒雁,欧阳权,崔闪,洪君. 战场环境下遗传黏菌算法的多机协同任务分配[J]. 浙江大学学报(工学版), 2024, 58(8): 1748-1756.
[9] 刘宇庭,郭世杰,唐术锋,张学炜,李田田. 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报(工学版), 2024, 58(2): 360-369.
[10] 陈丽芳,杨火根,陈智超,杨杰. B样条技术与遗传算法融合的全局路径规划[J]. 浙江大学学报(工学版), 2024, 58(12): 2520-2530.
[11] 靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.
[12] 李勇,柳富强,孙柏青,张秋豪,杨俊友. 日常养老情境的异构多机器人动态多任务分配[J]. 浙江大学学报(工学版), 2022, 56(9): 1806-1814.
[13] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[14] 刘雪娇,王慧敏,夏莹杰,赵思苇. 具有隐私保护的车联网空间众包任务分配方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1267-1275.
[15] 戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.