Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2106-2114    DOI: 10.3785/j.issn.1008-973X.2025.10.011
交通工程、水利工程、土木工程     
基于多方法加权融合的矿用车质心侧偏角估计
李仲兴(),贾英竹,耿国庆,覃夷旭,杨鑫昌
江苏大学 汽车与交通工程学院,江苏 镇江 212013
Mining truck sideslip angle estimation based on multiple methods weighted fusion
Zhongxing LI(),Yingzhu JIA,Guoqing GENG,Yixu QIN,Xinchang YANG
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(1709 KB)   HTML
摘要:

针对矿用车在崎岖路面工况下质心侧偏角估计困难的问题,提出基于扩展卡尔曼滤波(EKF)方法和积分方法加权融合的质心侧偏角估计方法. 为了准确描述车辆运动状态,建立包含非独立悬架和平衡悬架的矿用车十七自由度动力学模型. 利用基于轮速的车辆纵向速度估计器获取车辆纵向速度初步估计值,构建基于EKF的车辆纵、横向速度估计器和车辆横向速度积分估计器. 根据EKF方法和积分方法的特点,提出比例-微分融合权重系数计算方法,借此对2种方法进行加权融合. 仿真实验结果表明,所提方法能够结合EKF方法和积分方法的优点,实现车辆质心侧偏角的准确估计,具有较好的崎岖路面工况适应能力.

关键词: 矿用车状态估计融合估计动力学模型质心侧偏角扩展卡尔曼滤波(EKF)    
Abstract:

To address the challenge of estimating the sideslip angle of the mining truck in rugged terrain conditions, a sideslip angle estimation method based on the weighted fusion of the extended Kalman filter (EKF) method and the integration method was proposed. To accurately describe the vehicle’s motion state, a 17-DOF dynamic model of a mining truck incorporating both solid axle suspension and tandem suspension was established. Using a wheel-speed-based vehicle longitudinal speed estimator to obtain a preliminary estimate of the vehicle’s longitudinal velocity, a vehicle longitudinal and lateral velocity estimator based on EKF and a vehicle lateral velocity integration estimator were developed. Based on the characteristics of the EKF method and the integration method, a proportional-derivative fusion weight calculation method was proposed to fuse the two methods. Simulation results show that the proposed method can achieve accurate estimation of the vehicle’s sideslip angle by leveraging the advantages of both the EKF method and integration method, and has a good adaptability to the rugged terrain conditions.

Key words: mining truck    state estimation    fusion estimation    dynamics model    sideslip angle    extended Kalman filter (EKF)
收稿日期: 2024-09-25 出版日期: 2025-10-27
CLC:  U 461.1  
作者简介: 李仲兴(1963—),男,教授,博导,从事车辆动态性能模拟与控制研究. orcid.org/0000-0002-9022-0941. E-mail:zhxli@ujs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李仲兴
贾英竹
耿国庆
覃夷旭
杨鑫昌

引用本文:

李仲兴,贾英竹,耿国庆,覃夷旭,杨鑫昌. 基于多方法加权融合的矿用车质心侧偏角估计[J]. 浙江大学学报(工学版), 2025, 59(10): 2106-2114.

Zhongxing LI,Yingzhu JIA,Guoqing GENG,Yixu QIN,Xinchang YANG. Mining truck sideslip angle estimation based on multiple methods weighted fusion. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2106-2114.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.011        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2106

参数数值
满载质量m/kg110 000
整车横摆转动惯量Iz/(kg·m2)470 000
车轮半径R/mm734
满载质心高度h/mm1 995
质心到一轴的距离l1/mm3 693
质心到二轴的距离l2/mm107
质心到三轴的距离l3/mm1 857
一轴轮距B1/mm3 094
二轴轮距B2/mm2 984
三轴轮距B3/mm2 984
一轴非簧载质量ma1/(kg·m2)800
二轴非簧载质量ma2/(kg·m2)1 100
三轴非簧载质量ma3/(kg·m2)1 100
一桥侧倾转动惯量Ia1/(kg·m2)300
二桥侧倾转动惯量Ia2/(kg·m2)350
三桥侧倾转动惯量Ia3/(kg·m2)350
表 1  矿用车参数
图 1  矿用车十七自由度动力学模型
图 2  崎岖地形下轮胎纵向力和法向力
图 3  左侧平衡梁受力
参数数值参数数值
a01.597a7?0.3168
a1?1.103a80.01101
a2819.7a90.001710
a323340a10?0.1327
a4312.1a1120.17
a50.02031a12?5.208
a60.00001942a13?85.30
表 2  轮胎侧向力特性参数
图 4  扩展卡尔曼滤波方法与积分方法横向速度估计效果对比
图 5  比例-微分融合权重系数计算方法
图 6  矿用车质心侧偏角估计方法流程图
Hs/mm估计方法v=15 km/hv=20 km/h
RMSE/(°)ME/(°)RMSE/(°)ME/(°)
150EKF0.136 80.413 60.256 90.622 5
积分0.132 20.269 60.137 20.312 4
融合0.087 30.253 70.100 50.265 3
200EKF0.199 30.639 40.414 71.077 0
积分0.158 10.325 70.249 00.455 0
融合0.116 70.321 60.181 30.386 1
表 3  扭曲路车辆质心侧偏角估计误差
图 7  扭曲路车辆质心侧偏角估计结果(Hs=150 mm)
Hs/mm估计方法v=15 km/hv=20 km/h
RMSE/(°)ME/(°)RMSE/(°)ME/(°)
180EKF0.157 10.496 20.241 50.587 3
积分0.091 20.186 40.383 70.612 4
融合0.060 00.173 80.228 20.547 9
140EKF0.131 50.432 70.174 70.446 1
积分0.056 90.159 20.182 00.362 7
融合0.053 70.153 60.147 70.370 6
表 4  单边凸块路面质心侧偏角估计误差
图 8  单边凸块路面车辆质心侧偏角估计结果(Hs=180 mm)
1 李兆强, 吴巧俊, 熊福力, 等. 基于点云曲面拟合的自适应阈值地面分割算法 [EB/OL]. (2024–08–21)[2024–09–05]. https://link.cnki.net/urlid/11.2127.TP.20240821.0831.006.
2 MAZZILLI V, DE PINTO S, PASCALI L, et al Integrated chassis control: classification, analysis and future trends[J]. Annual Reviews in Control, 2021, 51: 172- 205
doi: 10.1016/j.arcontrol.2021.01.005
3 SKRICKIJ V, KOJIS P, ŠABANOVIČ E, et al Review of integrated chassis control techniques for automated ground vehicles[J]. Sensors, 2024, 24 (2): 600
doi: 10.3390/s24020600
4 SINGH K B, ALI ARAT M, TAHERI S Literature review and fundamental approaches for vehicle and tire state estimation[J]. Vehicle System Dynamics, 2019, 57 (11): 1643- 1665
doi: 10.1080/00423114.2018.1544373
5 陈慧, 高博麟, 徐帆 车辆质心侧偏角估计综述[J]. 机械工程学报, 2013, 49 (24): 76- 94
CHEN Hui, GAO Bolin, XU Fan Review on vehicle sideslip angle estimation[J]. Journal of Mechanical Engineering, 2013, 49 (24): 76- 94
doi: 10.3901/JME.2013.24.076
6 JIN X, YIN G, CHEN N Advanced estimation techniques for vehicle system dynamic state: a survey[J]. Sensors, 2019, 19 (19): 4289
doi: 10.3390/s19194289
7 汪洪波, 徐世寒, 周道林, 等 基于模糊滑模观测器与传感器信号积分可拓融合的车辆质心侧偏角估计[J]. 北京理工大学学报, 2022, 42 (7): 713- 722
WANG Hongbo, XU Shihan, ZHOU Daolin, et al Vehicle mass-centroid sideslip angle estimation based on extension fusion of fuzzy sliding-mode observer and sensor signal integral[J]. Transactions of Beijing Institute of Technology, 2022, 42 (7): 713- 722
8 卢兴华, 季学武, 刘贺, 等 基于轮胎侧偏刚度变化率的车辆质心侧偏角融合估计算法[J]. 科学技术与工程, 2021, 21 (29): 12735- 12743
LU Xinghua, JI Xuewu, LIU He, et al Fusion estimation algorithm of vehicle sideslip angle based on changing rate of tire cornering stiffness[J]. Science Technology and Engineering, 2021, 21 (29): 12735- 12743
9 夏秋, 陈特, 陈龙, 等 基于冗余信息融合的车辆质心侧偏角估计方法[J]. 汽车工程, 2022, 44 (2): 280- 289
XIA Qiu, CHEN Te, CHEN Long, et al Vehicle sideslip angle estimation method based on redundant information fusion[J]. Automotive Engineering, 2022, 44 (2): 280- 289
10 CHEN T, CAI Y, CHEN L, et al Sideslip angle fusion estimation method of three-axis autonomous vehicle based on composite model and adaptive cubature Kalman filter[J]. IEEE Transactions on Transportation Electrification, 2024, 10 (1): 316- 330
doi: 10.1109/TTE.2023.3263592
11 WU Y, LI G, FAN D Joint estimation of driving state and road adhesion coefficient for distributed drive electric vehicle[J]. IEEE Access, 2021, 9: 75460- 75469
doi: 10.1109/ACCESS.2021.3081443
12 ZHANG Y, LI M, ZHANG Y, et al An enhanced adaptive unscented Kalman filter for vehicle state estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6502412
13 李韶华, 王桂洋, 杨泽坤, 等 基于DRBF-EKF算法的车辆质心侧偏角与路面附着系数动态联合估计[J]. 力学学报, 2022, 54 (7): 1853- 1865
LI Shaohua, WANG Guiyang, YANG Zekun, et al Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (7): 1853- 1865
14 QI D, FENG J, NI X, et al Maximum correntropy extended Kalman filter for vehicle state observation[J]. International Journal of Automotive Technology, 2023, 24 (2): 377- 388
doi: 10.1007/s12239-023-0031-8
15 张年瑞. 转弯制动工况下车辆状态估计及稳定性控制研究 [D]. 长春: 吉林大学, 2022: 1–67.
ZHANG Nianrui. Research on vehicle state estimation and handling stability control under cornering braking [D]. Changchun: Jilin University, 2022: 1–67.
16 陈建锋, 吴强, 葛新元, 等 基于切换策略的车辆质心侧偏角高性能获取[J]. 汽车工程, 2024, 46 (2): 346- 355
CHEN Jianfeng, WU Qiang, GE Xinyuan, et al High-performance acquisition for vehicle sideslip angle based on switch strategy[J]. Automotive Engineering, 2024, 46 (2): 346- 355
17 李小雨, 许男, 郭孔辉 基于运动学方法和运动几何方法融合的质心侧偏角估计[J]. 机械工程学报, 2020, 56 (2): 121- 129
LI Xiaoyu, XU Nan, GUO Konghui Vehicle sideslip angle estimation based on fusion of kinematic method and kinematic-geometry method[J]. Journal of Mechanical Engineering, 2020, 56 (2): 121- 129
doi: 10.3901/JME.2020.02.121
18 高自群, 谢桂芝, 周兵, 等 多方法融合的汽车质心侧偏角估计[J]. 浙江大学学报: 工学版, 2023, 57 (12): 2391- 2400
GAO Ziqun, XIE Guizhi, ZHOU Bing, et al Estimation of vehicle sideslip angle based on multi-method fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (12): 2391- 2400
19 CHENG S, LI L, CHEN J Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (7): 5754- 5763
doi: 10.1109/TIE.2017.2774771
20 PARK G Vehicle sideslip angle estimation based on interacting multiple model Kalman filter using low-cost sensor fusion[J]. IEEE Transactions on Vehicular Technology, 2022, 71 (6): 6088- 6099
doi: 10.1109/TVT.2022.3161460
21 陈峥, 李磊磊, 舒星, 等 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35 (8): 20- 30
CHEN Zheng, LI Leilei, SHU Xing, et al Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35 (8): 20- 30
[1] 汪御飞,李康康,张海彬,陈渊博,王光庆. 基于压电与电磁复合效应的超声振动能量采集方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1293-1302.
[2] 卢地华,周胜增,陈自强. 适用于无人水下潜航器电池管理系统的SOC-SOH联合估计[J]. 浙江大学学报(工学版), 2024, 58(5): 1080-1090.
[3] 姜晓勇,应凯健,吴起威,魏璇. 足式机器人触地检测方法的研究综述[J]. 浙江大学学报(工学版), 2024, 58(2): 334-348.
[4] 高自群,谢桂芝,周兵,许艳,吴晓建,柴天. 多方法融合的汽车质心侧偏角估计[J]. 浙江大学学报(工学版), 2023, 57(12): 2391-2400.
[5] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[6] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[7] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[8] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.
[9] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[10] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[11] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[12] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[13] 郑钰馨, 奚鹰, 卜王辉, 李梦如. RV减速器5自由度纯扭转模型非线性特性分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2098-2109.
[14] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[15] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.