| 交通工程、水利工程、土木工程 |
|
|
|
|
| 基于时空信息融合的高速公路区域货运量预测模型 |
赵利英1( ),王占中2,*( ) |
1. 西安理工大学 经济与管理学院,陕西 西安 710054 2. 吉林大学 交通学院,吉林 长春 130022 |
|
| Prediction model for regional freight volume on highways based on spatiotemporal information fusion |
Liying ZHAO1( ),Zhanzhong WANG2,*( ) |
1. School of Economics and Management, Xi’an University of Technology, Xi’an 710054, China 2. Transportation College, Jilin University, Changchun 130022, China |
| 1 |
徐菲, 任爽 基于分解—集成的铁路货运需求预测研究[J]. 运筹与管理, 2021, 30 (8): 133- 138 XU Fei, REN Shuang Railway freight demand forecasting based on decompose-ensemble method[J]. Operations Research and Management Science, 2021, 30 (8): 133- 138
|
| 2 |
蔡志强. 阿拉山口铁路货运量预测分析 [D]. 兰州: 兰州交通大学, 2015: 1–44. CAI Zhiqiang. The forecasting analysis of volume of railway freight about Ala Shan Kou [D]. Lanzhou: Lanzhou Jiaotong University, 2015: 1–44.
|
| 3 |
付建飞, 安仲文, 宋小满, 等 基于灰色模型的铁路分品类货运量预测[J]. 交通运输工程与信息学报, 2014, 12 (3): 38- 42 FU Jianfei, AN Zhongwen, SONG Xiaoman, et al Traffic volume forecast of railway different freight categories based on grey model[J]. Journal of Transportation Engineering and Information, 2014, 12 (3): 38- 42
|
| 4 |
王开鹏. 基于高维面板数据的铁路货运量预测方法 [D]. 武汉: 华中科技大学, 2019: 1–87. WANG Kaipeng. Railway freight volume forecasting method based on high-dimensional panel data [D]. Wuhan: Huazhong University of Science and Technology, 2019: 1–87.
|
| 5 |
徐曼, 陆芬 基于组合预测模型的陕西省物流需求预测[J]. 物流科技, 2023, 46 (11): 27- 31 XU Man, LU Fen Forecasting and analysis of Shaanxi Province’s logistics demand based on combination forecasting model[J]. Logistics Sci-Tech, 2023, 46 (11): 27- 31
|
| 6 |
席少龙. 基于PCA-AFSA-SVM的河南省公路货运量预测研究 [D]. 深圳: 深圳大学, 2019: 1–67. XI Shaolong. Prediction of highway freight volume in Henan Province based on PCA-AFSA-SVM [D]. Shenzhen: Shenzhen University, 2019: 1–67.
|
| 7 |
SOBASZEK Ł, GOLA A, KOZŁOWSKI E Predictive scheduling with Markov chains and ARIMA models[J]. Applied Sciences, 2020, 10 (17): 6121
doi: 10.3390/app10176121
|
| 8 |
NUZZOLO A, COMI A Urban freight demand forecasting: a mixed quantity/delivery/vehicle-based model[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 65: 84- 98
doi: 10.1016/j.tre.2013.12.014
|
| 9 |
GAO N, HONG Y, CHEN J, et al Regional expressway freight volume prediction algorithm based on meteorological information[J]. Promet - Traffic and Transportation, 2023, 35 (2): 195- 211
|
| 10 |
LI Y, WEI Z Regional logistics demand prediction: a long short-term memory network method[J]. Sustainability, 2022, 14 (20): 13478
doi: 10.3390/su142013478
|
| 11 |
MOHAMMADZADEH M, CHOUPANI A A, AFSHAR F The short-term prediction of daily traffic volume for rural roads using shallow and deep learning networks: ANN and LSTM[J]. The Journal of Supercomputing, 2023, 79 (15): 17475- 17494
doi: 10.1007/s11227-023-05333-w
|
| 12 |
YIN S, JIANG Y, TIAN Y, et al A data-driven fuzzy information granulation approach for freight volume forecasting[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (2): 1447- 1456
doi: 10.1109/TIE.2016.2613974
|
| 13 |
YANG F, TANG X, GAN Y, et al Forecast of freight volume in Xi’an based on gray GM (1, 1) model and Markov forecasting model[J]. Journal of Mathematics, 2021, 2021: 6686786
|
| 14 |
CAI P, WANG Y, LU G, et al A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 21- 34
doi: 10.1016/j.trc.2015.11.002
|
| 15 |
WU S, YANG Z, ZHU X, et al Improved k-nn for short-term traffic forecasting using temporal and spatial information[J]. Journal of Transportation Engineering, 2014, 140 (7): 04014026
doi: 10.1061/(ASCE)TE.1943-5436.0000672
|
| 16 |
TIAN Y, ZHANG K, LI J, et al LSTM-based traffic flow prediction with missing data[J]. Neurocomputing, 2018, 318: 297- 305
doi: 10.1016/j.neucom.2018.08.067
|
| 17 |
ZOU Y, ZHU X, ZHANG Y, et al A space–time diurnal method for short-term freeway travel time prediction[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 33- 49
doi: 10.1016/j.trc.2013.10.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|