Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2086-2095    DOI: 10.3785/j.issn.1008-973X.2025.10.009
交通工程、水利工程、土木工程     
考虑乘客舒适度的混合车辆队列最优能耗控制方法
孟芸(),苗鹏辉,闫茂德*(),左磊
长安大学 电子与控制工程学院,陕西 西安 710064
Optimal energy consumption control method for mixed vehicle platoon considering passenger comfort
Yun MENG(),Penghui MIAO,Maode YAN*(),Lei ZUO
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(1603 KB)   HTML
摘要:

为了解决混合车辆队列协作控制中的能耗优化问题,同时保障乘客舒适度,提出实时优化的分布式模型预测控制与智能驾驶员模型结合的协作控制方法. 针对队列中的网联自动驾驶车辆,建立乘客舒适度约束,使用精确的油耗模型建立实时优化的分布式模型预测控制方法,在确保队列一致稳定的基础上降低实时能耗. 针对队列中的人工驾驶车辆,采用乘客舒适度和能耗性能良好的智能驾驶员跟驰模型描述跟驰行为,推理分析得到跟驰稳定性条件. 分别在恒速与变速领航车辆场景下开展仿真实验,验证所提控制方法在满足乘客舒适度约束条件下的跟踪性能. 以从初始状态到稳态的平均发动机功率为能耗优化指标,进行多组对比仿真实验,结果表明,相比对比算法,所提控制方法能够有效降低混合车辆队列的能耗.

关键词: 混合车辆队列能耗优化乘客舒适度分布式模型预测控制网联自动驾驶车辆人工驾驶车辆    
Abstract:

To address the energy consumption optimization problem in cooperative control of mixed vehicle platoon while ensuring passenger comfort, a collaborative control method combining real-time optimization with distributed model predictive control and an intelligent driver model was proposed. For connected autonomous vehicles in the platoon, passenger comfort constraints were established. Utilizing a precise fuel consumption model, a real-time optimized distributed model predictive control method was designed to reduce real-time energy consumption while ensuring the consistency and stability of the platoon. For human-driven vehicles in the platoon, an intelligent driver-following model that ensures passenger comfort and low energy consumption was adopted. The following stability condition was then derived. Simulation experiments were conducted in the scenarios of constant speed and variable speed leader vehicles to verify the tracking performance of the proposed control method under the constraints of passenger comfort. The average engine power from the initial state to the steady state was used as the energy consumption optimization index, and multiple sets of comparative simulation experiments were conducted. Simulation results show that, compared with the comparative algorithm, the proposed control method can effectively reduce the energy consumption of the mixed vehicle platoon.

Key words: mixed vehicle platoon    energy consumption optimization    passenger comfort    distributed model predictive control    connected autonomous vehicle    human-driven vehicle
收稿日期: 2024-09-04 出版日期: 2025-10-27
CLC:  TP 29  
基金资助: 国家自然科学基金资助项目(52372406);国家重点研发计划资助项目(2020YFB1600400);陕西省重点研发计划项目(2023-YBGY-212).
通讯作者: 闫茂德     E-mail: mengyun@chd.edu.cn;mdyan@chd.edu.cn
作者简介: 孟芸(1987—),女,教授,博士,从事车辆队列、车路协同研究. orcid.org/0000-0002-2317-9379. E-mail:mengyun@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孟芸
苗鹏辉
闫茂德
左磊

引用本文:

孟芸,苗鹏辉,闫茂德,左磊. 考虑乘客舒适度的混合车辆队列最优能耗控制方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2086-2095.

Yun MENG,Penghui MIAO,Maode YAN,Lei ZUO. Optimal energy consumption control method for mixed vehicle platoon considering passenger comfort. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2086-2095.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.009        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2086

图 1  网联自动驾驶车辆和人工驾驶车辆协作控制框架
图 2  网联自动驾驶车辆的通信拓扑
参数数值
$ {m_i}/{\text{kg}} $$ 1500+{U}[ - 200,{\text{ }}200] $
$ {\tau _i}/{\text{s}} $$ 0.50,0.38,0.42,0.60,0.45,0.50 $
$ \rho /({\text{kg}} \cdot {{\text{m}}^{ - 2}}) $$ 1.22 $
$ C_i^{\text{A}} $$ 0.90 - 0.01 \times i $
$ g $$ 9.80 $
$ {N_{\text{p}}} $$ 20 $
$ {a_{{\text{LB}}}}/({\text{m}} \cdot {{\text{s}}^{ - 2}}) $$ - 2 $
$ {a_{{\text{UB}}}}/({\text{m}} \cdot {{\text{s}}^{ - 2}}) $$ 2 $
$ {v^0}/({\text{m}} \cdot {{\text{s}}^{ - 1}}) $$ 20 $
$ {a_{\max }}/({\text{m}} \cdot {{\text{s}}^{ - 2}}) $$ 2 $
$ {b_{{\text{comf}}}}/({\text{m}} \cdot {{\text{s}}^{ - 2}}) $$ 2 $
$ {\alpha _{0,i}} $$ 0.54+0.01 \times i $
$ {\alpha _{1,i}} $$ 0.060 - 0.001 \times i $
$ {\alpha _{2,i}} $$ 0.000\;17 - 0.000\;01 \times i $
$ {r_{{\text{W}},i}}/{\text{m}} $$ 0.25+{U}[ - 0.5,{\text{ }}0.5] $
$ {\eta _{{\text{T}},i}} $$ 0.80+0.01 \times i $
$ {A_{\text{f}}}/{{\text{m}}^2} $$ 2.12 $
$ f_i^{\text{R}} $$ 0.015+0.001 \times i $
$ \Delta t $$ 0.1 $
$ {s^0}/{\text{m}} $$ 1.68 $
$ T $$ 0.8 $
$ {d_0}/{\text{m}} $$ 10 $
$ T'/{\text{s}} $$ 0 $
$ {{\boldsymbol{R}}_i} $$[ 0.01] $
$ {{\boldsymbol{F}}_i} $$ \text{diag}\;(5,\;2.5,\;1) $
$ {{\boldsymbol{G}}_i} $$ {(\left| {{\mathcal{O}_i}} \right|+1)^2} \cdot {{\boldsymbol{G}}_i} $
表 1  所提能耗控制方法的参数设置
图 3  恒速领航车辆场景的车辆状态
图 4  恒速领航车辆场景的车辆状态误差
图 5  恒速领航车辆场景的网联自动驾驶车辆控制输入
图 6  变速领航车辆场景的车辆状态
图 7  变速领航车辆场景的车辆状态误差
图 8  变速领航车辆场景的网联自动驾驶车辆控制输入
场景编号$ {p_i}(0)/{\text{m}} $$ {v_i}(0)/({\text{m}} \cdot {{\text{s}}^{ - 1}}) $$ {a_i}(t)/({\text{m}} \cdot {{\text{s}}^{ - 2}}) $
1$ - i \cdot {d_0} $$ 10+U{\rm{[ - 2, 2]}} $$ 0 $
2$ - i \cdot {d_0}+U{\rm{[ - 3, 3]}} $$ 10+U{\rm{[ - 2, 2]}} $$ 0 $
3$ - i \cdot {d_0}+U{\rm{[ - 3, 3]}} $$ 10+U{\rm{[ - 3, 3]}} $$ 0 $
表 2  能耗控制方法仿真对比实验的车辆状态分布
图 9  不同控制方法在3种场景中的能耗对比
1 CAO D, WANG X, LI L, et al Future directions of intelligent vehicles: potentials, possibilities, and perspectives[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7 (1): 7- 10
doi: 10.1109/TIV.2022.3157049
2 CHEN K, HE S, XU E, et al Ride comfort analysis and multivariable co-optimization of the commercial vehicle based on an improved nonlinear model[J]. IEEE Access, 2019, 8: 2732- 2749
3 ZHAI C, LIU Y, LUO F A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20 (5): 1883- 1896
4 CHEN J, TAO S, TENG S, et al Expression of concern for: toward sustainable intelligent transportation systems in 2050: fairness and eco-responsibility[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8 (6): 3537- 3540
doi: 10.1109/TIV.2023.3286873
5 LUO J, HE D, ZHU W, et al Multiobjective platooning of connected and automated vehicles using distributed economic model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19121- 19135
doi: 10.1109/TITS.2022.3170977
6 边有钢, 杨依琳, 胡满江, 等 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35 (3): 66- 77
BIAN Yougang, YANG Yilin, HU Manjiang, et al Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35 (3): 66- 77
doi: 10.3969/j.issn.1001-7372.2022.03.007
7 李淑庆, 李啟丰, 王昊, 等 协作式巡航控制下混合车队队列稳定性[J]. 交通运输系统工程与信息, 2021, 21 (4): 82- 89
LI Shuqing, LI Qifeng, WANG Hao, et al String stability of mixed platoon under cooperative adaptive cruise control[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (4): 82- 89
8 ZHAN J, MA Z, ZHANG L Data-driven modeling and distributed predictive control of mixed vehicle platoons[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8 (1): 572- 582
doi: 10.1109/TIV.2022.3168591
9 HU Y, CHEN C, HE J, et al Eco-platooning for cooperative automated vehicles under mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (4): 2023- 2034
doi: 10.1109/TITS.2021.3056122
10 YAO Z, WANG Y, LIU B, et al Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway[J]. Energy, 2021, 230: 120766
doi: 10.1016/j.energy.2021.120766
11 ZHAO W, NGODUY D, SHEPHERD S, et al A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802- 821
doi: 10.1016/j.trc.2018.05.025
12 SHAO Y, SUN Z. Robust eco-cooperative adaptive cruise control with gear shifting [C]// Proceedings of the American Control Conference. Seattle: IEEE, 2017: 4958–4963.
13 秦严严, 王昊, 王炜, 等 混有CACC车辆和ACC车辆的混合交通流驾驶舒适性[J]. 哈尔滨工业大学学报, 2017, 49 (9): 103- 108
QIN Yanyan, WANG Hao, WANG Wei, et al Driving comfort of traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. Journal of Harbin Institute of Technology, 2017, 49 (9): 103- 108
14 LI F, WANG Y Cooperative adaptive cruise control for string stable mixed traffic: benchmark and human-centered design[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (12): 3473- 3485
doi: 10.1109/TITS.2017.2760805
15 TIAN D, ZHANG P, ZHOU J, et al. Optimal control of mixed platoons with autonomous and human-driven vehicles [C]// Proceedings of the IEEE International Conference on Unmanned Systems. Beijing: IEEE, 2021: 122–127.
16 ZHENG Y, EBEN LI S, WANG J, et al Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (1): 14- 26
doi: 10.1109/TITS.2015.2402153
17 XIAO L, GAO F Practical string stability of platoon of adaptive cruise control vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1184- 1194
doi: 10.1109/TITS.2011.2143407
18 RAKHA H A, AHN K, MORAN K, et al Virginia tech comprehensive power-based fuel consumption model: model development and testing[J]. Transportation Research Part D: Transport and Environment, 2011, 16 (7): 492- 503
doi: 10.1016/j.trd.2011.05.008
19 MU Z, JAHEDINIA F, PARK B. Does the intelligent driver model adequately represent human drivers? [C]// Proceedings of the 9th International Conference on Vehicle Technology and Intelligent Transport Systems. Prague: Science and Technology Publications, 2023: 113–121.
20 BIAN Y, DU C, HU M, et al Fuel economy optimization for platooning vehicle swarms via distributed economic model predictive control[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19 (4): 2711- 2723
21 LI Z, LI W, XU S, et al Stability analysis of an extended intelligent driver model and its simulations under open boundary condition[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 419: 526- 536
doi: 10.1016/j.physa.2014.10.063
[1] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[2] 夏杰锋,唐武勤,杨强. 光伏航拍红外图像的热斑自动检测方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1640-1647.
[3] 宋家成,闫茂德,杨盼盼,巨永锋,岳靖斐. 基于数据驱动的鲁棒反步自适应巡航控制[J]. 浙江大学学报(工学版), 2022, 56(3): 485-493.
[4] 刘近贞,叶方方,熊慧. 基于卷积神经网络的多类运动想象脑电信号识别[J]. 浙江大学学报(工学版), 2021, 55(11): 2054-2066.
[5] 王雅静,王群,李博闻,刘志文,朴媛媛,遇涛. 基于脑电信号预发作数据段选取的癫痫发作预测[J]. 浙江大学学报(工学版), 2020, 54(11): 2258-2265.
[6] 席志鹏,楼卓,李晓霞,孙艳,杨强,颜文俊. 集中式光伏电站巡检无人机视觉定位与导航[J]. 浙江大学学报(工学版), 2019, 53(5): 880-888.
[7] 荆丹翔,韩军,徐志伟,陈鹰. 基于成像声呐的水下多目标跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(4): 753-760.
[8] 任逸飞, 陆志强, 刘欣仪, 张猛. 考虑技能水平的多技能资源约束项目调度[J]. 浙江大学学报(工学版), 2017, 51(5): 1000-1006.
[9] 周炳海, 赵猛. 柔性Job Shops集成调度启发式算法[J]. 浙江大学学报(工学版), 2016, 50(6): 1073-1079.
[10] 周炳海, 陈锦祥, 赵猛. 基于晶圆优先级的连续型Interbay搬运系统性能分析[J]. 浙江大学学报(工学版), 2015, 49(2): 296-302.
[11] 赵立杰, 柴天佑, 袁德成, 刁晓坤. 增强操作工况识别可靠性的概率PLS-ELM方法[J]. J4, 2013, 47(10): 1747-1752.
[12] 孙跃, 赵志斌, 苏玉刚, 唐春森. 非接触电能传输系统参数非线性规划[J]. J4, 2013, 47(2): 353-360.
[13] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[14] 赵立杰, 汤健, 柴天佑. 基于选择性极限学习机集成的磨机负荷软测量[J]. J4, 2011, 45(12): 2088-2092.
[15] 夏明, 董亚波, 鲁东明. 无线传感网逐跳自适应FEC传输可靠性
保证方法
[J]. J4, 2011, 45(2): 273-279.