Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 1080-1090    DOI: 10.3785/j.issn.1008-973X.2024.05.021
电气工程     
适用于无人水下潜航器电池管理系统的SOC-SOH联合估计
卢地华1,2(),周胜增1,2,陈自强3
1. 上海船舶电子设备研究所,上海 201108
2. 水声对抗技术重点实验室,上海 201108
3. 上海交通大学 海洋工程国家重点实验室,高新船舶与深海开发装备协同创新中心,上海 200240
Joint SOC-SOH estimation for UUV battery management system
Dihua LU1,2(),Shengzeng ZHOU1,2,Ziqiang CHEN3
1. Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China
2. Science and Technology on Underwater Acoustics Antagonizing Laboratory, Shanghai 201108, China
3. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2962 KB)   HTML
摘要:

为了提高无人水下潜航器(UUV)电池管理系统状态的估计精度,提出荷电状态-健康状态(SOC-SOH)联合估计方法. 搭建测试台架,采用4组锂离子电池进行全寿命周期下的充放电测试,获取不同老化程度下的特性数据. 经理论推导和实验分析设计四维表征因子,建立基于改进支持向量回归(SVR)的SOH估计模型. 探究电池状态的耦合关系,建立基于扩展卡尔曼滤波(EKF)的SOC估计模型,采用遗忘因子递推最小二乘算法(RLS)更新模型参数,利用SOH对SOC估计结果进行修正. 通过不同工况的实验进行验证,结果表明:四维表征因子和电池容量相关性好,SOH估计模型精度高,SOC估计模型精度在联合修正后得到提升. 所提的联合估计方法具有较高的通用性和可靠性,可以作为有效的嵌入式电池管理系统状态估计算法.

关键词: 无人潜航器(UUV)锂离子电池SOC-SOH联合估计扩展卡尔曼滤波(EKF)支持向量回归(SVR)    
Abstract:

A joint state of charge (SOC)-state of health (SOH) method of estimation was proposed in order to improve the state estimation accuracy of unmanned underwater vehicle (UUV) battery management system. A test bench was constructed, and four groups of lithium-ion batteries were used for charging and discharging test under the whole life cycle. Data under different attenuation degrees were obtained. Four-dimensional factors were designed by theoretical derivation and experimental analysis, and a SOH estimation model based on improved support vector regression (SVR) was established. The coupling relationship between battery states was explored. A SOC estimation model based on extended Kalman filter (EKF) was established and the forgetting factor recursive least squares (RLS) algorithm was used to update the model parameters. The SOC estimation results were corrected by SOH. The method was validated through different testing conditions experiment. Results show that the four-dimensional characterization factor and battery capacity have good correlation. The accuracy of SOH estimation model is high, and the accuracy of SOC estimation model is improved by joint modification. The proposed joint estimation method has high universality and reliability, and can be used as an effective state estimation algorithm for embedded battery management system.

Key words: unmanned underwater vehicle (UUV)    lithium-ion battery    SOC-SOH joint estimation    extended Kalman filter (EKF)    support vector regression (SVR)
收稿日期: 2023-06-20 出版日期: 2024-04-26
CLC:  TM 912  
作者简介: 卢地华(1995—),男,助理工程师,从事锂离子电池状态估计的研究. orcid.org/0000-0003-3301-7039. E-mail:ludihua_sjtu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
卢地华
周胜增
陈自强

引用本文:

卢地华,周胜增,陈自强. 适用于无人水下潜航器电池管理系统的SOC-SOH联合估计[J]. 浙江大学学报(工学版), 2024, 58(5): 1080-1090.

Dihua LU,Shengzeng ZHOU,Ziqiang CHEN. Joint SOC-SOH estimation for UUV battery management system. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1080-1090.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.021        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1080

电池类别UUV名称国家
锂离子电池REMUS100美国
REMUS6000美国
VEXPLORER加拿大
ALISTAR3000法国
Urashima日本
锂聚合物电池Bluefin9美国
Bulefin21美国
HUGIN 1000挪威
Sea Otter MK Ⅱ德国
表 1  UUV应用锂离子电池的情况
图 1  电池充放电测试台架
图 2  二阶等效电路模型
图 3  电池SOC-OCV拟合曲线
图 4  恒流充电阶段的电压变化曲线
图 5  恒压充电阶段的电流变化曲线
图 6  容量增量随电压的变化曲线
相关元素Person 系数Spearman系数
SOH & H10.92390.9368
SOH & H2?0.9799?0.9856
SOH & H30.99220.9898
SOH & H4?0.9681?0.9833
表 2  表征因子与SOH的相关性
图 7  表征因子与SOH的相关性
图 8  标准组电池的SOH估计结果
图 9  不同老化程度下的SOC-OCV对应结果
图 10  系统联合估计的流程
图 11  不同测试工况下的电池状态估计结果
图 12  不同老化程度下的电池状态估计结果
测试工况SOC0未修正修正
RMSE1RMSE2MAPE1MAPE2RMSE1RMSE2MAPE1MAPE2
FUDS0%0.058 50.133 70.045 60.078 70.014 20.045 10.041 20.011 9
30%0.039 80.031 90.039 60.023 20.031 30.030 50.012 50.010 7
80%0.027 80.016 30.035 80.020 30.010 30.008 50.010 70.008 0
100%0.037 20.017 40.034 40.020 40.011 20.010 20.012 20.008 2
DST0%0.052 40.123 60.021 90.052 30.046 50.046 40.013 70.011 4
30%0.029 80.035 60.018 70.024 30.032 10.032 70.011 40.009 4
80%0.016 50.018 40.017 30.023 40.014 10.006 40.010 00.007 3
100%0.037 30.019 80.020 20.024 10.015 50.008 90.010 40.007 9
表 3  第630次循环下的状态估计结果对比
1 DU X, HU X, HU J, et al An adaptive interactive multi-model navigation method based on UUV[J]. Ocean Engineering, 2023, 267: 113217
2 严浙平, 王璐 UUV水下定位方法的研究现状与进展[J]. 哈尔滨工程大学学报, 2017, 38 (7): 989- 1000
YAN Zheping, WANG Lu Research status and progress of UUV underwater localization[J]. Journal of Harbin Engineering University, 2017, 38 (7): 989- 1000
doi: 10.11990/jheu.201608067
3 代化, 张斌, 徐言哲 UUV动力电池发展现状与趋势[J]. 舰船科学技术, 2020, 42 (23): 155- 158
DAI Hua, ZHANG Bin, XU Yanzhe Current status and development trend of power batteries for UUV[J]. Ship Science and Technology, 2020, 42 (23): 155- 158
doi: 10.3404/j.issn.1672-7649.2020.12.031
4 荆有泽, 刘志伟 UUV用动力电池现状及其发展趋势[J]. 电源技术, 2019, 43 (6): 1073- 1076
JING Youze, LIU Zhiwei Current situation and development trend of power battery for UUV[J]. Power Technology, 2019, 43 (6): 1073- 1076
doi: 10.3969/j.issn.1002-087X.2019.06.048
5 HUANG D, CHEN Z, ZHENG C, et al A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185 (C): 847- 861
6 赵靖英, 胡劲, 张雪辉, 等 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报, 2023, 38 (17): 4551- 4563
ZHAO Jingying, HU Jin, ZHANG Xuehui, et al Joint estimation of the SOC-SOH based on lithium battery model and fractional order theory[J]. Transactions of China Electrotechnical Society, 2023, 38 (17): 4551- 4563
7 雷克兵, 陈自强 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报:工学版, 2021, 55 (10): 1978- 1985
LEI Kebing, CHEN Ziqiang Estimation of SOC of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1978- 1985
8 段林超, 张旭刚, 张华, 等 基于二阶近似扩展卡尔曼滤波算法的锂离子电池SOC估计[J]. 中国机械工程, 2023, 34 (15): 1797- 1804
DUAN Linchao, ZHANG Xugang, ZHANG Hua, et al SOC estimation of lithium-ion battery based on second-order approximate extended Kalman filter[J]. China Mechanical Engineering, 2023, 34 (15): 1797- 1804
doi: 10.3969/j.issn.1004-132X.2023.15.004
9 WANG Y, CHENG Y, XIONG Y, et al Estimation of battery open-circuit voltage and state of charge based on dynamic matrix control-extended Kalman filter algorithm[J]. Journal of Energy Storage, 2022, 52 (A): 104860
10 DANG L, HUANG Y, ZHANG Y, et al Multi-kernel correntropy based extended Kalman filtering for state-of-charge estimation[J]. ISA Transactions, 2022, 129 (B): 271- 283
11 ZHANG S, ZHANG Q, LIU D, et al State-of-charge estimation for lithium-ion battery during constant current charging process based on model parameters updated periodically[J]. Energy, 2022, 257: 124770
12 HONKURA K, TAKAHASHI K, HORIBA T Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources, 2011, 196 (23): 10141- 10147
doi: 10.1016/j.jpowsour.2011.08.020
13 LI X, JIANG J, WANG L, et al A capacity model based on charging process for state of health estimation of lithium-ion batteries[J]. Applied Energy, 2016, 177: 537- 543
doi: 10.1016/j.apenergy.2016.05.109
14 WANG Z, ZENG S, GUO J, et al State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167: 661- 669
15 周頔, 宋显华, 卢文斌, 等 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111
ZHOU Di, SONG Xianhua, LU Wenbin, et al Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111
16 BAI G, WANG P, HU C, et al A generic model-free approach for lithium-ion battery health management[J]. Applied Energy, 2014, 135: 247- 260
17 王志福, 罗崴, 闫愿, 等 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43 (6): 575- 584
WANG Zhifu, LUO Wei, YAN Yuan, et al Joint SOC-SOH estimation for li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43 (6): 575- 584
18 YANG J, XIA B, HUANG W, et al Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589- 1600
19 ZHAO Q, JIANG H, CHEN B, et al Research on the SOH prediction based on the feature points of incremental capacity curve[J]. Journal of the Electrochemical Society, 2021, 168 (11): 110554
doi: 10.1149/1945-7111/ac38f2
20 MAURES M, CAPITAINE A, DELÉTAGE J, et al Lithium-ion battery SOH estimation based on incremental capacity peak tracking at several current levels for online application[J]. Microelectronics and Reliability, 2020, 114: 113798
21 卢地华, 陈自强 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56 (3): 342- 352
LU Dihua, CHEN Ziqiang SOH estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiaotong University, 2022, 56 (3): 342- 352
22 刘轶鑫, 张頔, 李雪, 等 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41 (10): 1158- 1163
LIU Yixin, ZHANG Di, LI Xue, et al A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41 (10): 1158- 1163
[1] 祝庆伟,吴启超,徐一丹,俞小莉,黄瑞. 镍钴铝锂离子电池在不同SOC区间的老化[J]. 浙江大学学报(工学版), 2023, 57(4): 666-674.
[2] 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2275-2285.
[3] 夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.
[4] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[5] 雷克兵,陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985.
[6] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[7] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[8] 黄钰期,梅盼,陈晓济,邓长水. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213.
[9] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[10] 郑卫东, 水淼, 任政娟, 舒杰, 徐丹, 张瑞丰. 高岭土掺杂NASICON固体电解质及全固态电池性能[J]. J4, 2012, 46(2): 237-242.
[11] 李楠, 赵光宙. 基于交通流混合模型的高速公路状态估计[J]. J4, 2012, 46(10): 1846-1850.
[12] 李辉,李赫,常焜,陈卫祥. Sn/C纳米复合材料的合成及其电化学嵌放锂性能[J]. J4, 2011, 45(5): 919-922.
[13] 马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.
[14] 谢健 赵新兵 曹高劭 涂江平. 纳米CoSb作为锂离子电池新型负极材料的研究[J]. J4, 2006, 40(4): 638-641.