Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2391-2400    DOI: 10.3785/j.issn.1008-973X.2023.12.006
机械工程、能源工程     
多方法融合的汽车质心侧偏角估计
高自群1(),谢桂芝2,周兵1,许艳1,*(),吴晓建3,柴天1
1. 湖南大学 汽车车身先进设计制造国家重点实验室,湖南 长沙 410082
2. 湖南大学 国家高效磨削工程技术研究中心,湖南 长沙 410082
3. 南昌大学 先进制造学院,江西 南昌 330031
Estimation of vehicle sideslip angle based on multi-method fusion
Zi-qun GAO1(),Gui-zhi XIE2,Bing ZHOU1,Yan XU1,*(),Xiao-jian WU3,Tian CHAI1
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
2. National Engineering Research Center for High Efficiency Grinding, Hunan University, Changsha 410082, China
3. School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
 全文: PDF(3080 KB)   HTML
摘要:

汽车质心侧偏角融合估计过程中存在量测噪声不确定、依赖路面附着系数问题,影响估计精度,为此提出联合运动学方式与运动几何方式的质心侧偏角融合估计算法. 利用三自由度车辆运动学方程建立自适应扩展卡尔曼滤波器,用于车辆侧、纵向速度估计. 设计轮胎侧偏刚度模糊自适应的运动几何估计器,以实现车辆侧向速度估计. 根据2种估计方式适用性的差异,设计基于瞬态特性提取的侧向速度加权融合算法,利用侧向速度融合结果与运动学方式估计的纵向速度计算车辆质心侧偏角. Carsim-Simulink的仿真与驾驶员在环试验结果表明,所提算法具有高实时估计精度和路面附着系数变化的鲁棒性.

关键词: 质心侧偏角估计运动学估计方式运动几何估计方式加权融合估计模糊控制    
Abstract:

Due to the measurement noise uncertainty and the dependence on the road friction coefficient, the estimation accuracy of the vehicle sideslip angle fusion estimation was affected, and a fusion estimation algorithm of the vehicle sideslip angle based on the kinematic method and the kinematic-geometry method was proposed. An adaptive extended Kalman filter was established based on the three-degree-of-freedom vehicle kinematics equation to estimate the lateral and the longitudinal velocities of vehicles. A fuzzy adaptive kinematic geometry estimator for the tyre lateral stiffness was designed to estimate the vehicle lateral velocity. According to the differences in the applicability of two estimation methods, a lateral velocity weighted fusion algorithm based on the transient characteristics extraction was designed. Using the fusion result of the lateral velocity and the longitudinal velocity estimated by kinematic method, the vehicle sideslip angle was calculated. Results of Carsim-Simulink simulation and the driver in loop test show that the proposed algorithm has high real-time estimation accuracy and robustness to changes in the road friction coefficient.

Key words: sideslip angle estimation    kinematic estimation method    kinematic-geometric estimation method    weighting fusion estimation    fuzzy control
收稿日期: 2022-10-18 出版日期: 2023-12-27
CLC:  U 461.1  
基金资助: 国家自然科学基金资助项目(51875184,52002163,52262054)
通讯作者: 许艳     E-mail: gzq96@hnu.edu.cn;xuyanzb@163.com
作者简介: 高自群(1996—),男,硕士生,从事车辆动力学与控制研究. orcid.org/0000-0002-1869-291X. E-mail: gzq96@hnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高自群
谢桂芝
周兵
许艳
吴晓建
柴天

引用本文:

高自群,谢桂芝,周兵,许艳,吴晓建,柴天. 多方法融合的汽车质心侧偏角估计[J]. 浙江大学学报(工学版), 2023, 57(12): 2391-2400.

Zi-qun GAO,Gui-zhi XIE,Bing ZHOU,Yan XU,Xiao-jian WU,Tian CHAI. Estimation of vehicle sideslip angle based on multi-method fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2391-2400.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.006        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2391

图 1  三自由度车辆模型
图 2  质心侧偏角融合观测器结构图
图 3  扩展卡尔曼滤波算法流程图
图 4  运动几何观测器流程图
图 5  隶属度函数
er e
NB NM NS Z PS PM PB
NB Z NS NVS NM NVS NS Z
NM NS NVS NM NVM NM NVS NS
NS NVS NM NVM NB NVM NM NVS
Z NM NVM NB NVB NB NVM NM
PS NVS NM NVM NB NVM NM NVS
PM NS NVS NM NVM NM NVS NS
PB Z NS NVS NM NVS NS Z
表 1  后轮胎侧偏刚度的模糊规则
图 6  运动学与运动几何方式的估计结果对比
图 7  融合算法流程
图 8  融合权重分配图
参数 数值 参数 数值
整车质量m /kg 1230 质心高度 ${h_{\text{g}}}$/ m 0.54
整车绕z轴转动惯量 $ {I}_{\mathrm{z}} $/(kg·m2) 1480 前轮轮距 $ {b}_{\mathrm{f}} $/ m 1.485
质心到前轴距离 $ {l}_{\mathrm{f}} $/m 1.065 后轮轮距 $ {b}_{\mathrm{r}} $/ m 1.480
质心到后轴距离 $ {l}_{\mathrm{r}} $/m 1.535 车轮半径 ${r}$ / m 0.51
表 2  Carsim车辆参数
图 9  2种工况的方向盘转角
工况 eRMSE
运动学方式
(无自适应)
运动学方式
(有自适应)
运动几何方式 融合方式
双移线 0. 087 0. 054 0. 098 0. 041
角阶跃 0. 199 0. 098 0. 070 0. 043
表 3  2种工况估计结果的均方根误差
图 10  2种工况的质心侧偏角估计结果
图 11  变路面附着系数对接路面-双移线工况
图 12  驾驶员在环仿真平台
图 13  2种工况的驾驶员在环试验质心侧偏角估计结果
工况 eRMSE t/μs
运动学方式
(有自适应)
运动几何方式 融合方式
双移线 0.064 0.095 0.042 350
角阶跃 0.184 0.133 0.071 321
表 4  驾驶员在环试验估计结果的均方根误差与观测器单步仿真平均用时
1 KANG J, YOO J, YI K Driving control algorithm for maneuverability, lateral stability, and rollover prevention of 4WD electric vehicles with Independently driven front and rear wheels[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (7): 2987- 3001
doi: 10.1109/TVT.2011.2155105
2 GUSTAFSSON F Automotive safety systems[J]. IEEE Signal Processing Magazine, 2009, 26 (4): 32- 47
doi: 10.1109/MSP.2009.932618
3 MAMMAR S, KOENIG D Vehicle handling improvement by active steering[J]. Vehicle System Dynamics, 2002, 38 (3): 211- 242
doi: 10.1076/vesd.38.3.211.8288
4 STEPHANT J, CHARARA A, MEIZEL D Evaluation of a sliding mode observer for vehicle sideslip angle[J]. Control Engineering Practice, 2007, 15 (7): 803- 812
doi: 10.1016/j.conengprac.2006.04.002
5 LI X Y, XU N, LI Q, et al A fusion methodology for sideslip angle estimation on the basis of kinematics-based and model-based approaches[J]. Journal of Automobile Engineering, 2020, 234 (7): 1930- 1943
6 LI L, JIA G, RAN X, et al A variable structure extended Kalman filter for vehicle sideslip angle estimation on a low friction road[J]. Vehicle System Dynamics, 2014, 52 (2): 280- 308
doi: 10.1080/00423114.2013.877148
7 ZHAO L H, LIU Z Y, CHEN H Design of a nonlinear observer for vehicle velocity estimation and experiments[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (3): 664- 672
doi: 10.1109/TCST.2010.2043104
8 YU Z P Review of vehicle state estimation problem under driving situation[J]. Journal of Mechanical Engineering, 2009, 45 (5): 20- 33
doi: 10.3901/JME.2009.05.020
9 GUO H Y, CAO D P, CHEN H, et al Vehicle dynamic state estimation: state of the art schemes and perspectives[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5 (2): 418- 431
doi: 10.1109/JAS.2017.7510811
10 ZHANG Z Y, ZHANG S Z, HUANG C X, et al State estimation of distributed drive electric vehicle based on adaptive extended Kalman filter[J]. Journal of Mechanical Engineering, 2019, 55 (6): 156
doi: 10.3901/JME.2019.06.156
11 ZHANG Q, LIU Z Y, GU M Q, et al. Vehicle sideslip angle estimation based on switched fuzzy model [C]// 2019 IEEE 58th Conference on Decision and Control (CDC). Nice: IEEE, 2019: 4817-4822.
12 PIYABONGKARN D, RAJAMANI R, GROGG J A, et al Development and experimental evaluation of a slip angle estimator for vehicle stability control[J]. IEEE Transactions on Control Systems Technology, 2008, 17 (1): 78- 88
13 PIYABONGKARN D , RAJAMANI R , GROGG J A, et al. Development and experimental evaluation of a slip angle estimator for vehicle stability control [C]// 2006 American Control Conference. Minneapolis: IEEE, 2006: 5366-5371.
14 李小雨. 复合工况下分布式驱动电动汽车失稳机理及操纵稳定性控制研究 [D]. 长春: 吉林大学, 2020: 43-44.
LI Xiao-yu. Research on instability mechanism and handling stability control of distributed drive electric vehicles under combined slip condition [D]. Changchun: Jilin University, 2020: 43-44.
15 YOU S H, HAHN J O, LEE H New adaptive approaches to real-time estimation of vehicle sideslip angle[J]. Control Engineering Practice, 2009, 17 (12): 1367- 1379
doi: 10.1016/j.conengprac.2009.07.002
16 NISHIO A, TOZU K, YAMAGUCHI H, et al. Development of vehicle stability control system based on vehicle sideslip angle estimation [C]// SAE 2001 World Congress. Michigan: SAE, 2006: 1-10.
17 GAO B L, XIE S G, GONG J F Vehicle sideslip angle estimation based on fusion of kinematics-dynamics methods[J]. Automotive Safety and Energy, 2015, 6 (1): 72- 78
18 高博麟, 陈慧, 陈威, 等 汽车质心侧偏角融合估计方法[J]. 汽车工程, 2013, 35 (8): 717- 722
GAO Bo-lin, CHEN Hui, CHEN Wei, et al Fusion estimation of vehicle sideslip angle[J]. Automotive Engineering, 2013, 35 (8): 717- 722
19 KIM K H, LEE J G, CHAN G P Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 (1): 125- 137
doi: 10.1109/TAES.2009.4805268
20 CHELI F, SABBIONI E, PESCE M, et al A methodology for vehicle sideslip angle identification: comparison with experimental data[J]. Vehicle System Dynamics, 2007, 45 (6): 549- 563
doi: 10.1080/00423110601059112
[1] 丁萌,顾秀涛,郑先杰,郭毓. 基于模糊补偿的连续型空间机械臂预定时间控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1175-1180.
[2] 孟祥飞,王仁广,徐元利. 双行星排汽车纯电驱动模式的转矩分配策略[J]. 浙江大学学报(工学版), 2020, 54(11): 2214-2223.
[3] 谢宪毅, 金立生, 高琳琳, 夏海鹏. 基于变权重系数的LQR车辆后轮主动转向控制研究[J]. 浙江大学学报(工学版), 2018, 52(3): 446-452.
[4] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[5] 朱绍鹏,林鼎,谢博臻,俞小莉,韩松. 电动汽车驱动力分层控制策略[J]. 浙江大学学报(工学版), 2016, 50(11): 2094-2099.
[6] 胡健, 吴功平,王伟, 杨守东,刘明, 杨智勇, 何缘, 郭磊.
巡线机器人无动力下坡速度控制方法
[J]. 浙江大学学报(工学版), 2015, 49(10): 1878-1884.
[7] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[8] 唐昉,周晓军,魏燕定. 改善人-车综合性能的变传动比反馈方法[J]. J4, 2014, 48(3): 456-462.
[9] 王硕, 应济, 陈子辰, 冯宇. 精密注塑机保压压力的新型模糊自校正控制[J]. J4, 2011, 45(8): 1370-1375.
[10] 管成, 彭华. 基于非线性函数的注塑机注射压力模糊控制[J]. J4, 2011, 45(8): 1382-1386.
[11] 唐铁英 邱家驹 蒙文川. 免疫模糊算法在电网规划中的应用[J]. J4, 2008, 42(5): 815-819.
[12] 陆玲霞 汪雄海. 基于模糊控制的电磁水热系统研究[J]. J4, 2008, 42(4): 598-601.
[13] 吴乐彬 王宣银 李强. 对接模拟并联六自由度平台的模糊免疫PID控制[J]. J4, 2008, 42(3): 387-391.
[14] 冯晓露 覃来丰 岑可法. 基于遗传算法的模糊控制器动态优化方法[J]. J4, 2007, 41(3): 461-465.
[15] 孙多青 马晓英 俞百印 李霞. 带有鲁棒控制项的MIMO非线性系统的模糊控制[J]. J4, 2007, 41(10): 1620-1624.