Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1382-1386    DOI: 10.3785/j.issn.1008-973X.2011.08.009
机械工程     
基于非线性函数的注塑机注射压力模糊控制
管成, 彭华
浙江大学 机械设计研究所,浙江 杭州 310027
Fuzzy control of injection pressure of injection molding machines based on a nonlinear function
GUAN Cheng, PENG Hua
Institution of Mechanical Design, Zhejiang University, Hangzhou 310027,China
 全文: PDF  HTML
摘要:

为了提高注塑机注射压力控制精度,根据伺服电动机直接驱动定量液压泵节能型注塑机的特点,建立注射液压系统注射压力的非线性数学模型,提出一种基于非线性二次曲线的模糊控制方法.采用基于压力差控制流量的方法引入一个非线性函数来优化流量信号,该方法无需专门设计速度控制向压力控制切换的切换点.由于液压系统本身的参数和负载模型参数均具有不确定性,采用模糊控制方法在线调节该非线性函数的参数.配合PI控制算法实现对注射压力的精确跟踪控制.仿真和实验结果表明,该方法能够满足注塑机实际工作时对注射压力的控制要求,稳态压力波动小于0.1 MPa,具有良好的跟踪性能.

Abstract:

According to the specialty of injection molding machine with servo motor and constant pump,a nonlinear dynamic model of injection hydraulic system was set up. Based on a nonlinear conic, a new type closed-loop pressure control was proposed to improve the control precision of injection pressure. A method of flow control was presented to create a nonlinear function with the help of the difference of pressure, and a fuzzy control method is used to adjust controller parameter on line to overcome uncertainties of parametric and load of hydraulic system, by which the flow signal was optimized, and the design of the point where the velocity control is switched to pressure control could be avoided. A PI control is combined to realize pressure tracking. The experimental and simulating results show that the proposed method can satisfy the requirement for injection pressure of injection molding machine and has good self-adapting character. The steady state pressure fluctuation is less than 0.1 MPa, which verifies the effective of this method.

出版日期: 2011-09-08
:  TH 137  
基金资助:

国家自然科学基金资助项目(61074143);国家科技支撑计划资助项目(2007BAF13B04).

作者简介: 管成(1968—),男,副教授,从事电液系统控制研究. Email: guan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

管成, 彭华. 基于非线性函数的注塑机注射压力模糊控制[J]. J4, 2011, 45(8): 1382-1386.

GUAN Cheng, PENG Hua. Fuzzy control of injection pressure of injection molding machines based on a nonlinear function. J4, 2011, 45(8): 1382-1386.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.08.009        https://www.zjujournals.com/eng/CN/Y2011/V45/I8/1382

[1] 权龙,王成宾.伺服电动机定量液压泵驱动的注塑机电液控制系统分析[J].液压气动与密封,2005(4): 16-20.

QUAN Long, WANG Chengbin. Research on the electrohydraulic control system driven by AC servo motor and constant pump used in plastic injection model machine [J].Hydraulics Pneumatics & Seals,2005(4): 16-20.

[2] 彭天好,徐兵,杨华勇.变频液压技术的发展及研究综[J]. 浙江大学学报:工学版,2004,38(2):215-221.

PENG Tianhao,XU Bing, YANG Huayong. Development and research overview on variable frequency hydraulic technology [J].Journal of Zhejiang University: Engineering Science, 2004, 38(2): 215-221.

[3 ] RAADE J W, KAZEROONI H. Analysis and design of a novel hydraulic power source for mobile robots [J]. IEEE Transaction on Automation Science and Engineering, 2005,2(3): 226-232.

[4] HAGGAG S, ALSTROM D, CETINKUNT S, et al. Modeling control and validation of an electrohydraulic steerbywire system for articulated vehicle applications [J]. IEEE/ASME Transactions on Mechatronics,2005,10(6): 688-692.

[5] HAVLICSEK H, ALLEYNE A. Nonlinear control of an electro hydraulic injection molding machine via iterative adaptive learning [J]. Transactions of Mechatronics,1999 (3): 312-323.

[6] 李茜,夏伯锴.注塑机注射速度的模型预测迭代学习控制[J].控制工程2009(7): 429-431.

LI Qian,XIA Bokai. Model prediction iterative learning control of ram velocity for injection molding machines
[J].Control Engineering of China ,2009(7): 429-431.

[7] WANG Youqing, ZHOU Donghua, GAO Furong. Iterative learning model predictive control for multiphase batch processes [J].Journal of Process Control, 2008 (18): 543-557.

[8] HUANG Mingshan. Cavity pressure based grey prediction of the fillingtopacking switchover point for injection molding [J].Journal of Materials Processing Technology, 2007, 183 (2/3): 419-424.

[9] TAN K K, HUANG S N, JIANG X. Adaptive control of ram velocity for the injection molding machine [J]. IEEE Trans. on Control Systems Technology, 2001, 9(4): 663-671.

[10] CHEN WenChin, TAI Peihao, DENG Weijao. A neural networkbased approach for dynamic quality prediction in a plastic injection molding process [J]. Expert Systems with Applications,2008, 35 (3): 43-849.

[11] 王康正,张培仁,赵 松.基于神经网络的注塑机注射速度的迭代学习控制[J].计算机辅助工程2005,(12): 71-75.

WANG Kangzheng, ZHANG Peiren, ZHAO Song. Ram velocity control in plastic injection molding machines with iterative network control [J] Computer Aided Engineering, 2005, (12): 71-75.

[12] 王兴天.注塑技术与注塑机[M].北京:化学工业出版社,2007: 54-55.

[13] 孙玲,肖翔.注塑机注射保压切换控制分析[C]∥中国机械工程学会塑性工程学会生产工程学术委员会议.南昌:[s. n.],2004: 171-175.

SUN Lin, XIAO Xiang. Analysis on injectionholding switchover of injection molding machines.[C]∥Production Engineering Academic Committee Conference of CMES. Nanchang: [s. n.],2004: 171-175.

[14] EDWARDS R, DIAO L Y, THOMAS C L. A Comparison of position, cavity pressure, and ultrasound sensors for switchover control in injection molding [C]∥ANTEC 2003 Conference Proceedings. Nashville: [s. n.], 2003: 586-590.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.