Please wait a minute...
J4  2012, Vol. 46 Issue (1): 142-149    DOI: 10.3785/j.issn.1008-973X.2012.01.23
机械工程     
液压挖掘机回转制动能量回收系统
管成1,徐晓1,林潇2,王守洪3
1.浙江大学 机械设计研究所,浙江 杭州 310027;2.上海汽车集团股份有限公司技术中心,上海 201804;
3.山重建机有限公司,山东 济宁 272100
Recovering system of swing braking energy in hydraulic excavator
GUAN Cheng1, XU Xiao1, LIN Xiao2, WANG Shou-hong3
1.Institute of Mechanical Design, Zhejiang University, Hangzhou 310027, China;2.SAIC Motor Technical Center,
Shanghai 201804, China;3. Strong Construction Machinery  Limited Company,Jining 272100, China
 全文: PDF  HTML
摘要:

为了回收液压挖掘机在回转阶段的制动能量,提出一种基于回转马达进/出口压力差自动识别回转过程所处阶段,决策能量回收的全液压自动控制回转制动能量回收系统.引入一正态分布函数,以蓄能器压力状态(SOP)、液压泵出口压力以及负流量反馈压力为输入信号,根据负载的实时需求功率,提出一种以复合恒功率负流量动力控制决策发动机和蓄能器主辅动力源的能量分配方法,保证回转机构的正常高效运转.仿真结果表明,当回转系统作为单独执行机构时,采用该回收系统的液压挖掘机,能够实现高达50.0%的再生制动能量用于驱动回转的能量回收利用效率,在相同工况下比同吨位液压挖掘机节能16.3%,不影响操作习惯和操作性能.

Abstract:

In order to recover the braking energy from the hydraulic excavator during swing phase,an automatic hydraulic-controlled braking energy recovery system was proposed which can automatically identify the swing stage  by the pressure difference between inlet and outlet of the swing pump and determining distribution algorithm of the recovering energy. One normal school function was introduced. State of pressure (SOP) of the accumulator, the outlet pressure of the hydraulic pump and the feedback pressure from negative-flow control were considered as input signals. According to the real-time required power of the load, the energy distribution algorithm was proposed based on the comprehensive constant-power negative-flow control between the main power source and the auxiliary power source (that is engine and accumulator), which ensures the normal operation of the swing mechanism. Simulation results show that the hydraulic excavator equipped with the swing recovery system can achieve 16.3% energy saving compared with the baseline under the same working condition, and the overall chain efficiency from the total braking energy to the terminal swing mechanism is as much as 50.0% approximately while the swing is utilized as the actuator alone.

出版日期: 2012-02-22
:  TH 137  
基金资助:

国家“863”高技术研究发展计划资助项目(2010AA044401).

作者简介: 管成(1968-),男,副教授,从事机械工程动力节能控制等的研究.E-mail: guan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.

GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator. J4, 2012, 46(1): 142-149.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.01.23        http://www.zjujournals.com/eng/CN/Y2012/V46/I1/142

[1] 同济大学. 单斗液压挖掘机 [M]. 2版. 北京:中国建筑工业出版社,1986: 127-169.
[2] TAKAO N, ETSUJIRO I, MASAYUKI K. Power simulation for energy saving in hybrid excavator [J].Transaction of Society of Automotive Engineers of Japan, 2004, 35(4): 101-106.
[3] 刘刚,宋德朝,陈海明,等.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报:自然科学版,2010,38(7): 1079-1084.
LIU Gang, SONG Dechao, CHEN Haiming, et al. Modeling and control strategy of parallel hybrid system in hydraulic excavator [J]. Journal of Tongji University: Natural Science, 2010, 38(7): 1079-1084.
[4] 肖清,王庆丰,张彦庭,等.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报:工学版, 2007,41(3): 480-483, 528.
XIAO Qing, WANG Qingfeng, ZHANG Yanting, et al. Study on modeling and control strategy of hybrid system in hydraulic excavator [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(3): 480-483, 528.
[5] 林潇,管成,潘双夏,等.并联式混合动力液压挖掘机参数匹配方法[J].农业机械学报,2009,40(6): 28-32.
LIN Xiao, GUAN Cheng, PAN Shuangxia, et al. Parameters matching method for parallel hybrid hydraulic excavators [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(6): 28-32.
[6] 王冬云,潘双夏,林潇,等.基于混合动力技术的液压挖掘机节能方案研究[J].计算机集成制造系统,2009,15(1): 188-197.
WANG Dongyun, PAN Shuangxia, LIN Xiao, et al. Research on the energy saving scheme of hydraulic excavator based on hybrid technology [J]. Computer Integrated Manufacturing Systems, 2009, 15(1): 188-197.
[7] 张敏杰,王庆九,管成.并联式油液混合动力挖掘机动力系统仿真研究[J].中国机械工程,2010, 21(16): 1932-1936.
ZHANG Minjie, WANG Qingjiu, GUAN Cheng. Simulation research of parallel hydraulic hybrid excavator [J]. China Mechanical Engineering, 2010, 21(16): 1932-1936.
[8] BULTER K L, STAVENS K M. A versatile computer simulation tool for design and analysis of electric and hybrid drive trains [C] ∥ 1997 SAE Proceeding of Electric and Hybrid Vehicle Design Studies. DETROIT: SAE, 1997: 19-25.
[9] TAKAO N, ETSUJIRO I, MASAYUKI K. Power simulation for energy saving in hybrid excavator[J]. JSAE (Society of Automotive Engineers of Japan) Annual Congress, 2004, 35(4): 101-106.
[10] 张庆永, 常思勤. 液驱混合动力车辆的制动能量回收研究[J].中国工程机械学报, 2008, 6(3): 293-298.
ZHANG Qingyong, CHANG Siqin. Braking energy recycling for hydraulicallydriven hybridpowered vehicles [J].Chinese Journal of Construction Machinery, 2008, 6(3): 293-298.
[11] STELSON K A, MEYER J J, ALLEYNE A G, et al. Optimization of a passenger hydraulic hybrid vehicle to improve fuel economy [C]∥Proceedings of the 7th JFPS International, Symposium on Fluid Power. TOYAMA: JFPS, 2008: 143-148.
[12] SUN Hui, JIANG Jihai, WANG Xin. Torque control strategy for a parallel hydraulic hybrid vehicle [J]. Journal of Terramechanics, 2009, 46(6): 259-265.
[13]JACKEY R, SMITH P, BLOXHAM S. Physical system model of a hydraulic energy storage device for hybrid powertrain applications [C]∥ 2005 SAE Advanced Hybrid Vehicle Powertrains. DETROIT: SAE, 2005: 127-138.
[14] WEI X, GUZZELLA L, UTKIN V I, et al. Modelbased fuel optimal control of hybrid electric vehicle using variable structure control systems [J]. ASME Transactions Journal of Dynamic Systems, Measurement, and Control, 2007, 129(1): 13-19.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[7] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.