Please wait a minute...
J4  2011, Vol. 45 Issue (11): 1934-1940    DOI: 10.3785/j.issn.1008-973X.2011.11.008
机械工程     
液黏调速离合器中摩擦副间隙内流体传热分析
黄家海,邱敏秀,方文敏
浙江大学 流体传动及控制国家重点实验室 浙江 杭州 310027
Heat transfer in the gap of friction pairs in hydroviscous drive
HUANG Jia-hai,QIU Min-xiu,FANG Wen-min
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了研究流体润滑条件下液黏调速离合器摩擦副间隙内流体主要传热方式的问题,分别建立等温、绝热及对流换热3种热边界条件下流体流场的简化数学模型,并考虑流体黏温特性的影响,采用商用计算流体动力学软件Fluent对流场进行求解,分别获得等温、绝热及对流换热条件下流场温度分布的数值解;在数值计算的基础上,利用液黏调速离合器实验装置分别测量不同输入转速及输入流量条件下摩擦副间隙内流体温度.研究结果表明等温边界条件下的数值计算结果与实验测试结果比较接近,绝热边界条件下的数值计算结果与实验结果之间偏差最大;流场温度随着摩擦副间隙或输入流量的增加而降低,随着输入转速的增加而增加.

Abstract:

The temperature distribution of the flow between friction pairs which run under condition of full fluid lubrication was researched in order to determine the main form of heat transfer in hydroviscous drive. The simplified mathematical model for the flow under isothermal, adiabatic and convective thermal boundary conditions were built, taking into account the effect of viscosity-temperature characteristics. The flow between friction pairs was solved by using the commercial computational fluid dynamics code FLUENT. Numerical temperature results were obtained accordingly. Based on the numerical simulations, temperature distributions under different condition of input rotational speed and input flow rate were measured on the hydroviscous drive test rig. It is shown that experimental data are close to numerical results under isothermal thermal boundary condition and deviate badly from that under adiabatic boundary condition. In addition, it is found that temperature decreases as either the gap or input flow rate increases, but it increases as input rotational speed increases.

出版日期: 2011-12-08
:  TH 137  
基金资助:

国家自然科学基金资助项目(50475106).

通讯作者: 邱敏秀, 女, 研究员, 博导.     E-mail: qmx@zju.edu.cn
作者简介: 黄家海(1979-), 男, 博士生, 从事流体传动及控制研究. E-mail: huangjh79@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.

HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive. J4, 2011, 45(11): 1934-1940.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.11.008        https://www.zjujournals.com/eng/CN/Y2011/V45/I11/1934

[1] TATARA R A, PAYVAR P. Multiple Engagement wet clutch heat transfer model [J]. Numerical heat transfer, Part A, 2002, 42(3): 215-231.
[2] LAI Y G. Simulation of heattransfer characteristics of wet clutch engagement processes [J]. Numerical heat transfer, Part A, 1998, 33(6): 583-597.
[3] DAVIS C L, SADEGHI F, KROUSGRILL C M. A simplified approach to modeling thermal effects in wet clutch engagement: Analytical and experimental comparison [J]. ASME Journal of Tribology, 2000, 122(1): 110-118.
[4] MARKLUND P, MKI R, LARSSON R, et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications [J]. Tribology International, 2007, 40(5): 876-884.
[5] 董勋,周益言.油膜调速离合器传动机理研究[J]. 上海交通大学学报, 1991, 25(1): 19-28.
DONG Xun, ZHOU Yiyan. A study of transmission on modulated clutch [J]. Journal of Shanghai Jiaotong University, 1991, 25(1): 19-28.
[6] 魏宸官,赵家象.液体黏性传动技术[M].北京:国防工业出版社,1996: 51-82.
[7] HUANG J H, QIU M X, LIAO L L, et al. Numerical Simulation of Flow Field between Frictional Pairs in Hydroviscous Drive Surface [J]. Chinese Journal of Mechanical Engineering, 2008, 21(3): 72-75.
[8] 孟庆睿,侯友夫.液体黏性调速起动瞬态过程数值模拟研究[J]. 摩擦学学报,2009, 29(5): 418-424.
MENG Qingrui, HOU Youfu. Numerical simulation on transient behavior of hydroviscous drive speed regulating start [J]. Tribology, 29(5):418-424.
[9] MENG Q R, HOU Y F. Mechanism of hydroviscous soft start of belt conveyor [J]. Journal of China University of Mining & Technology, 2008, 18(3): 459-465.
[10] 洪跃,刘谨,王云根.液体调速离合器中摩擦副热效应分析[J]. 中国工程科学,2003, 5(9):55-60.
HONG Yue, LIU Jin, WANG Yungen. Thermal effect analysis of frictional disk in speeding clutch [J]. Science Engineering, 2003, 5(9):55-60.
[11] 何春勇, 刘正林, 吴铸新. 船用水密封推力轴承扇形推力瓦润滑性能数值分析[J]. 润滑与密封, 2009, 34(6): 39-41.
HE Chunyong, LIU Zhenglin, WU Zhuxin, et al. Numerical analysis of lubricating properties of sector thrust pad of ship waterlubricated thrust bearing [J]. Lubrication Engineering, 2009, 34(6):39-41.
[12] PATANKAR S V.Numerical heat Transfer and fluid flow[M]. Washington, D. C.: Hemisphere Publishing Corporation, 1980:41-137.
[13] H.史里希廷. 边界层理论[M], 徐燕侯, 徐立功, 徐书轩, 译. 北京: 科学技术出版社, 1988:309-320.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.