Please wait a minute...
J4  2014, Vol. 48 Issue (1): 21-28    DOI: 10.3785/j.issn.1008-973X.2014.01.004
机械与能源工程     
液压软管脉冲试验的发展与研究综述
满在朋,丁凡,丁川,刘硕,黄挺峰
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Development and research overview on impulse test of hydraulic hose
MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(987 KB)   HTML
摘要:

介绍液压软管脉冲试验的发展历史与国内外现状.研究液压脉冲的4种产生方式,对不同液压脉冲产生方式的优缺点进行对比分析.讨论液压脉冲试验的难点,主要包括数学模型的建立及控制策略的选用、油液温度的精确控制、系统的节能设计、软管曲挠机构的设计等.针对这些难点提出相应的对策,包括采用可以适应负载变化的先进控制策略、串级温度控制系统与模糊控制结合、合理利用脉冲压力下降阶段的能量等.说明了液压脉冲试验的未来方向是朝着耐高温及高压方向发展.

Abstract:

The development of impulse test of hydraulic hose was introduced. Current application and research situation of impulse test of hydraulic hose was stated. Four methods to generate hydraulic impulse were discussed, and the advantages and disadvantages of the methods were pointed. The difficulties of hydraulic impulse test were analyzed in detail, including the establishment of the system model, the selection of control strategy, the precise control of test temperature, energy-saving design of the system, and the design of apparatus for flexing test of hydraulic hose. Solutions for these difficulties were proposed, including adoption of advanced control strategies which can adapt to changes in load, combination of cascaded temperature control system and fuzzy control, rational use of the energy derived from pressure-drop-stage. The development prospect of hydraulic impulse test was given, which can bear higher temperature and higher pressure.

出版日期: 2014-01-01
:  TH 137  
通讯作者: 丁凡,男,教授,博导.     E-mail: fding@zju.edu.cn
作者简介: 满在朋(1990-),男,博士生,从事电液比例/伺服元件及系统的研究.E-mail:manzaipeng@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.

MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose. J4, 2014, 48(1): 21-28.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.01.004        http://www.zjujournals.com/eng/CN/Y2014/V48/I1/21

[1] 管成,徐晓,林潇,等.液压挖掘机回转制动能量回收系统 [J]. 浙江大学学报:工学版, 2012, 46(1): 142-149.
GUAN Cheng, XU Xiao, LIN Xiao, et al. Recovering system of swing braking energy in hydraulic excavator [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(1): 142-149.
[2] 杜恒,魏建华,冯瑞琳. 压力跟踪阀建模、仿真与试验研究 [J]. 浙江大学学报:工学版, 2012, 46(6): 1034-1040.
DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research on pressure tracking valve [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 1034-1040.
[3] 王静,秦文波,龚国芳,等.大流量高性能液压系统的若干关键技术研究 [J]. 浙江大学学报:工学版, 2009, 43(7): 1264-1268.
WANG Jing, QIN Wen-bo, GONG Guo-fang, et al. Several key technologies of hydraulic system with high flow and high performance [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(7): 1264-1268.
[4] SEUNG B K, NAK S C. Micro-damage formation of a rubber hose assembly for automotive hydraulic brakes under a durability test [J]. Engineering Failure Analysis, 2009, 16(4): 1262-1269.
[5] LEE G C , KIM H E , PARK J W, et al. Life prediction for high pressure hose of power steering system by impulse pressure test [J]. Transactions of the Korean Society of Mechanical Engineers, 2010, 34(1): 91-96.
[6] EVANS C W. Testing and applications of wire-reinforced hydraulic hose [J]. Polymer Testing, 1987, 7(5): 309-315.
[7] EVANS C W, MANLEY T R. Factors affecting the impulse testing of hydraulic hose [J]. Polymer Testing, 1986, 6(2): 135-149.
[8] ISO 1436, Rubber hoses and hose assemblies: wire-braid-reinforced hydraulic types for oil-based or water-based fluids specification [S]. [S.l.]: ISO, 2009.
[9] EVANS C W. Testing requirements for hydraulic hose [J]. Polymer Testing, 1980, 1(1): 39-49.
[10] SAE J343, Test and test procedures for SAE 100R series hydraulic hose and hose assemblies [S]. [S.l.]: SAE, 2001.
[11] ISO 6605, Hydraulic fluid power -hoses and hose assemblies: test methods [S]. [S.l.]: ISO, 2002.
[12] ISO 6772, Aerospace -fluid systems -impulse testing of hydraulic hose, tubing and fitting assemblies [S]. [S.l.]: ISO, 1996.
[13] ISO 6802, Rubber and plastics hoses and hose assemblies with wire reinforcements: hydraulic impulse test with flexing [S]. [S.l.]: ISO, 2008.
[14] SAE AIR1228,Standard impulse machine equipment and operation [S].[S.l.]: SAE, 2001.
[15] THOMAS J H, MANITOWOC W. Hydraulic hose flex-impulse tester: United States, 5339677[P]. 1994-08-23.
[16] PAUL A B, ALBERT J, KACHICH K. Hydraulic impulse tool with enhanced fluid seal: United States, 535919 [P]. 1997-03-18.
[17] KIM H E, LEE G C, KIM J H, et al. System design and performance test of hydraulic intensifier [J]. Transactions of the Korean Society of Mechanical Engineers. 2010, 34(7): 947-952.
[18] 姚志军. 液压脉冲试验台的瞬态计算[D].西安:西北工业大学,2003: 14.
YAO Zhi-jun. Instantaneous process calculation of hydraulic impulse testing machine [D]. Xian: Northwestern Polytechnical University, 2003: 14.
[19] 李军. 飞机液压系统压力脉冲试验的机理分析与控制[D].西安:西北工业大学,2007: 14-18.
LI Jun. Principle analysis and control for pressure impluse test of airplane hydraulic system [D]. Xian: Northwestern Polytechnical University, 2007: 1418.
[20] 天津市精研工程机械传动有限公司. 液压软管总成脉冲试验台:中国,2003201256883[P]. 2005-01-19.
Tianjin Jingyan Mechanical Transmission Inc. Impulse testing equipment of hydraulic hose assemblies: China, 2003201256883[P].2005-01-19.
[21] 尚雅层, 来跃深. 液压脉冲设备动态性能分析与仿真[J]. 机床与液压, 2006(9): 222-224.
SHANG Ya-ceng, LAI Yue-shen. Dynamic analysis and simulation of hydraulic impulse testing equipment [J]. Machine Tool and Hydraulics, 2006(9): 222-224.
[22] 陈楼生. 高压软管脉冲试验设备[J]. 洪都科技, 2008(2): 48-51.
CHEN Lou-sheng. High-pressure hose impulse test equipment [J]. Hongdu Science and Technology, 2008(2): 48-51.
[23] HUBBERT C. Application of the method of characteristics to the dam break wave problem [J].Journal of Hydraulic Research, 2009, 47(1): 41-49.
[24] BORUTZKY W. Bond graph modeling and simulation of multidisciplinary systems: an introduction [J].Simulation Modeling Practice and Theory, 2009, 17(1): 321.
[25] ZHU D, RAJAN S D, MOBASHER B, et al. Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate [J].Experimental Mechanics, 2011, 51(8): 1347-1363.
[26] 蔡亦钢.流体传输管道动力学[M]. 杭州:浙江大学出版社,1990.
[27] HAO L, LUYBEN W L. Temperature control of the BTX divided-wall column [J].Industrial and Engineering Chemistry Research, 2010, 49 (1): 189-203.
[28] HAO L, LUYBEN W L. New control structure for divided-wall columns [J]. Industrial and Engineering Chemistry Research, 2009, 48 (13): 6034-6049.
[29] 史玲玲. 循环流化床锅炉主气温控制系统及其控制策略研究[D].北京:华北电力大学,2007: 27-30.
SHI Ling-ling. Main-steam control system of circulating fluidized bed boiler and study of control strategy [D]. Beijing: North China Electric Power University, 2007: 27-30.
[30] FENG B, GONG G F, YANG H Y. Self-tuning -parameter fuzzy PID temperature control in a large hydraulic system [C]∥ Advanced Intelligent Mechatronics. Montreal: [s. n.], 2009: 1418-1422.
[31] JONG I Y, AHN K K, DINH Q T . A study on an energy saving electro-hydraulic excavator [C]∥ ICCAS-SICE International Joint Conference. Fukuoka: [s. n.], 2009: 3825-3830.
[32] 李壮云.液压元件与系统[M]. 北京:机械工业出版社,2011.
[33] ZIO E, PEDRONI N. Estimation of the functional failure probability of a thermal-hydraulic passive system by subset simulation [J]. Nuclear Engineering and Design, 2009, 239 (3): 580-599.
[34] ANGADIA S V, JACKSONA R L, CHOEA S, et al. Reliability and life study of hydraulic solenoid valve. Part 2: experimental study [J]. Engineering Failure Analysis, 2009, 16 (3): 944-963.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[4] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[5] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[6] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[7] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[8] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[9] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[10] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[11] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[12] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[13] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[14] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.