Please wait a minute...
J4  2011, Vol. 45 Issue (11): 1927-1933    DOI: 10.3785/j.issn.1008-973X.2011.11.007
机械工程     
液黏调速离合器传动特性分析
黄家海,魏建华,邱敏秀
浙江大学 流体传动及控制国家重点实验室 浙江 杭州 310027
Investigation on the transmission characteristics of hydroviscous drive
HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对液黏调速离合器实验装置中一对摩擦副间隙内流体流动开展研究,建立定常、层流条件下的简化数学模型,在假设流体黏度为常数的基础上,分别获得流场的近似解析解和数值解.数值研究结果表明:1)惯性力使得摩擦副间隙内流体切向线速度呈非线性分布,且小于忽略惯性力条件下的速度值;2)液黏调速离合器传动过程中,转矩损耗始终存在,该值与摩擦副间隙大小及输入、输出转速等因素相关,且与摩擦副间隙值呈三次方比例关系;3)由于转矩损耗及转速差的存在,使得任一摩擦副间隙值都对应一个最佳输出转速工作区间,在此区间内,传动效率较高.在理论分析研究的基础上,进行转矩传递特性的实验测试,发现实验结果与理论计算结果在曲线变化趋势上基本一致.

Abstract:

The flow between a pair of frictional plates in hydroviscous drive experiment rig was investigated. A simplified mathematic model for the steady and laminar flow was established for the flow in the gap of frictional pairs, and it was solved analytically and numerically respectively under the assumption of constant viscosity. The numerical results show that 1) inertia force causes the distribution of tangential velocity to be nonlinear, and the velocity value is smaller than that with neglecting the inertia force; 2) torque loss exists during the course of torque transmission, which is associated with the clearance, input and output rotational speed, and other factors. Furthermore, it is proportional to the 3rd power of the clearance; 3) there is an optimum output rotational speed interval for any clearance, owing to torque loss and rotational speed differences, and in the interval, the transmission efficiency is higher. On the basis of theoretical analysis, the torque transferring characteristics of hydroviscous drive was tested on the test bench. It is found that the changing trend of experiments results is basically in accordance with the trend of numerical curves.

出版日期: 2011-12-08
:  TH 137  
基金资助:

国家自然科学基金资助项目(50475106).

通讯作者: 邱敏秀, 女, 研究员, 博导.     E-mail: qmx@zju.edu.cn
作者简介: 黄家海(1979-), 男, 博士生, 从事流体传动及控制研究. E-mail: huangjh79@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.

HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive. J4, 2011, 45(11): 1927-1933.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.11.007        https://www.zjujournals.com/eng/CN/Y2011/V45/I11/1927

[1] APHALE C R, SCHULTZ W W, CECCIO S L. The influence of grooves on the fully wetted and aerated flow between open clutch plates [J]. ASME Journal of Tribology, 2010, 132(1): 1-7.
[2] YUAN Y Q, ATTIBELE P, DONG Y. CFD simulation of the flows within disengaged wet clutches of an automatic transmission [J]. SAE Transactions, 2003, 112(3): 1760-1768.
[3] YUAN Y Q, LIU EYSION A, Hill J, et al. An improved hydrodynamic model for open wet transmission clutches [J]. ASME Journal of Fluids Engineering, 2007, 129(3): 333-337.
[4] DAVIS C L, SADEGHI F, KROUSGRILL C M. A simplified approach to modeling thermal effects in wet clutch engagement: Analytical and experimental comparison [J]. ASME Journal of Tribology, 2000, 122(1): 110-118.
[5] HUANG J H, QIU M X, LIAO L L, et al. Numerical Simulation of flow field between frictional pairs in hydroviscous drive surface [J]. Chinese Journal of Mechanical Engineering, 2008, 21(3): 72-75.
[6] HUANG X G, WEI C G. Stability of oil film and output speed of hydroviscous drive affected by the pressure of control oil [J].Journal of Beijing Institute of Technology, 2001, 10(3): 266-271.
[7] 孟庆睿,侯友夫.液体黏性调速起动瞬态过程数值模拟研究[J]. 摩擦学学报,2009, 29(5): 418-424.
MENG Qingrui, HOU Youfu. Numerical simulation on transient behavior of hydroviscous drive speed regulating start [J]. Tribology, 29(5):418-424.
[8] 洪跃,刘谨,王云根.液体调速离合器中摩擦副热效应分析[J]. 中国工程科学,2003, 5(9):55-60.
HONG Yue, Liu Jin, WANG Yungen. Thermal effect analysis of frictional disk in speeding clutch [J]. Science Engineering, 2003, 5(9):55-60.
[9] 陈宁.液体黏性传动(HVD)技术的研究[D]. 杭州:浙江大学,2003.
CHEN Ning. Theoretical and application researches on hydroviscous drive[D]. HangZhou:Zhejiang University, 2005.
[10] 邵威.液体黏性传动摩擦副的研究[D]. 杭州:浙江大学,2005.
SHAO Wei. The research of the friction coupling on hydroviscous drive [D]. HangZhou: Zhejiang University, 2005.
[11] 魏宸官,赵家象. 液体黏性传动技术[M].北京:国防工业出版社,1996: 51-82.
[12] PATANKAR S V. Numerical heat transfer and fluid flow [M]. Washington, D C: Hemisphere Publishing Corporation, 1980: 41-137.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[15] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.