Please wait a minute...
J4  2013, Vol. 47 Issue (5): 741-749    DOI: 10.3785/j.issn.1008-973X.2013.05.001
机械工程     
盾构掘进机关键技术及模拟试验台现状与展望
望施虎1,2,杨华勇1,龚国芳1,王林涛1
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 西安交通大学 机械工程学院,陕西 西安 710049
Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation 
SHI Hu1,2, YANG Hua-yong1, GONG Guo-fang1, WANG Lin-tao1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China  
 全文: PDF  HTML
摘要:

针对盾构机在掘进过程中穿越复杂地质时,负载和动态过程难以用理论模型准确描述的难题,采用模拟试验方法完善盾构设计和取得关键技术的突破.归纳盾构设计和制造中所涉及到的6项关键技术,介绍盾构掘进模拟试验方法及模拟试验中的相似关系,重点论述体现盾构模拟试验技术先进性的模拟试验平台的研制进展和现状.结合工程实际和未来发展趋势,分析并总结现有模拟试验平台存在的局限性,研制具有功能多样且集成度高、模拟地质环境覆盖范围宽、掘进土体边界影响小等特点的新一代盾构综合模拟试验平台. 

Abstract:

It is very difficult to describe the externalload and dynamic process accuratelywhen a shield tunneling machinegoes through complex and uncertain geological layers. The simulating experimentbecomes necessary for perfecting the design and developing the new related technologiesofshield tunneling machine.  Reviewing six kinds of key technologies involved in the design and manufacturing of shield tunneling machines, the simulating method and the similarity in the tunneling experiment, this paper discussedthe development progress and current status of test rigs embodying the advanced simulatingexperimenttechnology in detail. Combing with the project practice and futuredevelopment, this paper also put forward the shortcomings of the existed test rigs.  As a result, a new comprehensive test rig for shield tunneling machine was developed, which was characterized bymultifunction, integration, a wide rangeofsimulated geo-environments and small boundary effect.

出版日期: 2013-05-01
:  TH 137  
基金资助:

 国家“973”重点基础研究发展规划资助项目(2007CB714004);国家“863”高技术研究发展计划资助项目(2007AA041806).

通讯作者: 龚国芳,男,教授.     E-mail: gfgong@zju.edu.cn
作者简介: 施虎(1984-),男,博士,从事电液控制技术研究.E-mail: tigershi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.

SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation . J4, 2013, 47(5): 741-749.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.05.001        http://www.zjujournals.com/eng/CN/Y2013/V47/I5/741

[1] MARTIN H. EPB or slurry machine: the choice [J]. Tunnels & Tunnelling, 1994(6): 35-36.
[2] YUKINORI K. Present status and technology of shield tunneling method in Japan [J]. Tunnelling and Underground Space Technology,2003,18(2):145-159.
[3] YUKINORI K. Status of tunnels and tunnelling in Japan [J]. Tunnelling and Underground Space Technology,2003,18(2): 113-114.
[4] 胡国良. 盾构模拟试验平台电液控制系统关键技术研究[D]. 杭州:浙江大学,2006.
HU Guo-liang. Research into electro-hydraulic control system for a simulator test rig of shield tunneling machine [D]. Hanghou: Zhejiang University, 2006.
[5] 杨华勇,龚国芳.盾构掘进机发展战略研究[C]∥上海国际隧道工程研讨会论文集.上海:同济大学出版社,2003: 339346.
YANG Hua-yong, GONG Guo-fang. Research on development strategy of shield tunneling machine [C]∥Proceedings of Shanghai International Tunnel Conference.Shanghai:ongii University Press,2003:339-346.
[6] 宋克志,王梦恕. 盾构的选型及国产化问题初论[J].西部探矿工程, 2004, 16(5):99-101.
SONG Ke-zhi, WANG Meng-shu. Selection and domestication of shield machines [J]. West-China Exploration Engineering, 2004, 16(5):99-101.
[7] SUGIMOTO M,SRAMOON A.Theoretical model of shield behavior during excavation I: Theory [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2): 138-155.
[8] SRAMOON A,SUGIMOTO M,KAYUKAWAK J. Theoretical model of shield behavior during excavation II: Application [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2): 156-165.
[9] 王洪新. 土压平衡盾构刀盘开口率选型及其对地层适应性研究[J].土木工程学报,2010,43(3): 8892.
WANG Hong-xin. Type selection of the head aperture ratio of EPB shield cutterheads and adaptability to stratum characteristics [J]. China Civil Engineering Journal, 2010,43(3): 88-92.
[10] 陈长冰,梁醒培,王豪. 大直径盾构刀盘结构整体强度分析[J]. 机械设计,2012,29(1): 2931.
CHEN Chang-bing, LIANG Xing-pei, WANG Hao. Integral intensity analysis of large diameter shield cutter head structure [J]. Journal of Machine Design, 2012, 29(1): 29-31.
[11] 秦大同,赵勇. 盾构机刀盘驱动多级行星齿轮传动系统的多目标优化[J]. 中国机械工程,2012,23(1): 1217.
QIN Da-tong, ZHAO Yong. Multi-objective optimization of multi-stage planetary gear train used in shield machine cutter driver [J]. China Mechanical Engineering, 2012, 23(1): 12-17.
[12] 蒲毅,刘建琴,郭伟,等. 土压平衡盾构机刀盘刀具布置方法研究[J]. 机械工程学报,2011, 47(15): 161-168.
PU Yi, LIU Jian-qin, GUO Wei, et al. Research on cutting tool layout method of earth pressure balance shield [J]. Journal of Mechanical Engineering, 2011, 47(15): 161-168.
[13] 刘宣宇,邵诚. 盾构机自动控制技术现状与展望[J]. 机械工程学报,2010,46(20): 152-160.
LIU Xuan-yu, SHAO Cheng. Present status and prospect of shield machine automatic control technology [J]. Journal of Mechanical Engineering, 2010, 46(20): 152-160.
[14] 魏建华, 丁书福. 土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J]. 工程机械, 2005, 36(1): 18-19.
WEI Jian-hua, DING Shu-fu. Excavating face stabilization mechanism of soil pressure balance shield and control of soil pressure in pressure cabin [J]. Construction Machinery and Equipment, 2005, 36 (1): 1819.
[15] 胡国良,龚国芳,杨华勇. 基于压力流量复合控制的盾构推进液压系统[J]. 机械工程学, 2006, 42(6): 124-127.
HU Guo-liang, GONG Guo-fang, YANG Hua-yong. Thrust hydraulic system of shield tunnel boring machine with pressure and flow compound control [J]. Chinese Journal of Mechanical Engineering, 2006, 42(6): 124-127.
[16] YANG Hua-yong, SHI Hu, GONG Guo-fang. Electro-hydraulic proportional control of thrust system for shield tunneling machine [J]. Automation in Construction, 2009, 18(7): 950-956.
[17] MICHAEL J K.Monitoring ground deformation in tunneling: Current practice in transportation tunnels [J]. Engineering Geology, 2005(79):93-113.
[18] 刘峰, 龚国芳, 石元奇, 等. 基于自适应控制技术的盾构掘进监控系统[J]. 工程设计学报, 2010, 17(4): 302-306.
LIU Feng, GONG Guo-fang, SHI Yuan-qi, et al. Monitoring system of shield tunneling machine based on adaptive control technology [J]. Journal of Engineering Design, 2010, 17 (4): 302306.
[19] 奚志勇,杨宏燕,顾德焜. 大型泥水平衡盾构监控系统[J]. 现代隧道技术,1998,35(3):8-12.
XI Zhi-yong, YANG Hong-yan, GU De-kun. Monitoring system for large slurry balance shield [J]. Modern Tunneling Technology, 1998, 35(3): 8-12.
[20] SUGIMOTO M,SRAMOON A,KONISHI S, et al. Simulation of shield tunneling behavior along a curved alignment in a multilayered ground [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 684-694.
[21] 何川,汪洋,方勇,等. 土压平衡式盾构掘进过程的相似模型试验[J]. 土木工程学报,2012,45(2):162-169.
HE Chuan, WANG Yang, FANG Yong, et al. Similarity model test of earth-pressure-balanced shield tunneling process [J]. China Civil Engineering Journal, 2012, 45(2): 162169.
[22] 康盛,李菊,华雪赉,等. 隧道盾构掘进过程仿真系统的研究与实现[J]. 电气自动化,2012,34(1): 31-35.
KANG Sheng, LI Ju, HUA Xue-lai, et al. Tunnel Shield simulation system research and implementation [J]. Electrical Automation, 2012,34(1): 31-35.
[23] NOMOTO T, IMAMURA S, HAGIWARA T, et al. Shield tunnel construction in centrifuge [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (4): 289-300.
[24] RAFFAELE V, CLAUDIO O, DANIELE P. Soil conditioning of sand for EPB applications: A laboratory research [J]. Tunneling and Underground Space Technology, 2008, 23(3): 308-317.
[25] DANIELE P, CLAUDIO O, RAFFAELE V. Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations [J]. Journal of Geotechnical and Geo-environmental Engineering, 2007, 133(12): 1622-1625.
[26] MERRITT A S, MAIR R J. Mechanics of tunneling machine screw conveyors: model tests [J]. Geotechnique, 2006, 56(9): 605-615.
[27] MERRITT A S, MAIR R J. Mechanics of tunneling machine screw conveyor:A theoretical model [J]. Geotechnique, 2008, 58(2): 79-94.
[28] 朱合华,徐前卫,廖少明,等. 土压平衡盾构法施工参数的模型试验研究[J]. 岩土工程学报, 2006, 28(5): 553-557.
ZHU He-hua, XU Qian-wei, LIAO Shao-ming, et al. Experimental study on working parameters of EPB shield machine [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 553-557.
[29] 陈馈,韩亚丽. 泥水盾构控制系统模拟试验台[J]. 建筑机械化. 2007,28(4): 5962.
CHEN Kui, HAN Ya-li. Simulation test-bed of slurry shield control system [J]. Construction Mechanization, 2007,28(4): 59-62.
[30] 冯培培,卜壮志. 大直径泥水盾构试验台的控制系统设计[J]. 隧道建设, 2011, 31(4): 524-528.
FENG Pei-pei, BU Zhuang-zhi. Analysis on control system of test-bed of large-diameter slurry shields [J]. Tunnel Construction, 2011, 31(4): 524-528.
[31] 陈振环. 基于液压恒压网络的盾构土压平衡控制研究[D]. 广州:广东工业大学,2006.
CHEN Zhen-huan. Earth pressure balance control of tunnel boring machine based on constant pressure network [D]. Guangzhou: Guangdong University of Technology, 2006.
[32] 李守巨,屈福政,曹丽娟,等.土压平衡盾构机密封舱压力控制实验研究[J]. 煤炭学报, 2011, 36(6): 934-937.
LI Shou-ju, QU Fu-zheng, CAO Li-juan, et al. Experimental investigation about chamber pressure control of earth pressure balance shield [J]. Journal of China Coal Society, 2011, 36(6): 934-937.
[33] 赵强政. Φ 520 mm土压平衡式模型盾构机研制及试验性掘进控制模拟[D]. 成都:西南交通大学, 2007.
ZHAO Qiang-zheng. The design of Φ 520 mm EPB model shield machine and the simulation of the tunneling test control [D]. Chengdu: Southwest Jiaotong University, 2007.
[34] 尹旅超,朱振宏,李玉珍,等. 日本隧道盾构新技术[M]. 武汉:华中理工大学出版社,1999.
[35] 白杉,周洁. 我国隧道盾构掘进机的发展和应用[J]. 工程机械, 2004, 35(5):26-28.
BAI Shan, ZHOU Jie. Development and application of domestic tunnel boring shield [J]. Construction Machinery and Equipment, 2004, 35(5): 26-28.
[36] 施虎. 盾构掘进系统电液控制技术及其模拟试验研究[D]. 杭州:浙江大学,2012.
SHI Hu. Investigation into electrohydraulic control systems for shield tunneling machine and simulated experiment method [D]. Hangzhou: Zhejiang University, 2012.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[7] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[8] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[9] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[10] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[11] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[12] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[13] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[14] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.
[15] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.