Please wait a minute...
J4  2012, Vol. 46 Issue (6): 1034-1040    DOI: 10.3785/j.issn.1008-973X.2012.06.012
机械工程     
压力跟踪阀建模、仿真与试验研究
杜恒, 魏建华, 冯瑞琳
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Modeling, simulation and experimental research
on pressure tracking valve
DU Heng, WEI Jian-hua, FENG Rui-lin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

在应用减振技术的大型液压装备中常常需要实现弹性元件内压力对执行器内压力的跟踪,以保证弹性元件与执行器接通时系统的平稳.为了简易、安全并可靠的实现这一功能,设计了一种压力跟踪阀,建立相应的数学模型及AMESim仿真模型.对阀的反馈环节进行分析并考察阀芯作用面积、阀口开度和阻尼器阻尼对阀动、静态特性的影响.当阀芯直径为16 mm、阻尼孔直径为1 mm且为零开口阀时,压力跟踪阀具有较好的动、静态特性.搭建相关试验台进行试验验证,结果表明:压力跟踪阀可以较好地实现压力跟踪功能,压力跟踪误差可控制在0.1 MPa左右且压力跟踪稳定.应用了压力跟踪阀的系统可以有效的实现弹性元件与执行器之间的平稳切换.

Abstract:

Large engineering equipment with damping system often needs to achieve that the pressure in the elastic element tracks the pressure in the actuator, which can make the system switch smoothly when the elastic element and the actuator are connected. In order to achieve this goal easily, safely and reliably, a pressure tacking valve was designed, and the corresponding mathematical model and the simulation model based on AMESim were established. The feedback link on the valve was analyzed, and the dynamic and static characteristics of the valve under the influences of the spool area, valve opening and damper damping were studied. When the spool diameter is 16 mm, the orifice diameter is 1 mm and the valve opening is zero, the pressure tracking valve has good static and dynamic characteristics of pressure tracking. The test bench was set up and the experimental research was performed. The results show that the pressure tracking error can be controlled in about 0.1 MPa and the stability of the valve is good. The elastic element and the actuator can switch smoothly in the system with the application of the pressure tracking valve.

出版日期: 2012-07-24
:  TH 137  
基金资助:

国家自然科学基金资助项目(51075359).

通讯作者: 魏建华, 男, 教授, 博导.     E-mail: jhwei@sfp.zju.edu.cn
作者简介: 杜恒(1983—),男,博士生,从事电液控制理论及工程应用研究.E-mail:duheng20082008@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.

DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve. J4, 2012, 46(6): 1034-1040.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.06.012        http://www.zjujournals.com/eng/CN/Y2012/V46/I6/1034

[1] 杜恒,魏建华,孔晓武.连通式油气悬架升降同步控制[J].农业机械学报,2010,41(3): 29-32.
DU Heng, WEI Jianhua, KONG Xiaowu. Lifting synchronization control for interconnected hydropneumatic suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(3): 29-32.
[2] 魏建华,杜恒.压力跟踪阀:中国,CN101769273A[P]. 2010-07-07.
[3] 林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988: 42-57.
[4] 贾文华,殷晨波.一种压力补偿阀的建模及稳定性分析[J].上海交通大学学报,2011,45(4): 561-564.
JIA Wenhua, YIN Chenbo. Modeling and stabilityanalysis of a pressure compensator for flowcontrol valve[J]. Journal of Shanghai Jiaotong University, 2011, 45(4): 561-564.
[5] 吕云嵩.阀控非对称缸频域建模[J].机械工程学报,2007,43(9): 122-126.
L Yunsong. Modeling in frequency domain for valve controlled asymmetric hydraulic cylinders[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 122-126.
[6] 孔晓武,魏建华. 大流量插装式伺服阀数学模型及试验验证[J].浙江大学学报:工学版,2007,41(10): 1759-1762.
KONG Xiaowu, WEI Jianhua. Mathematical model and experimental verification of high flow cartridge servo valve[J]. Journal of Zhejiang University: Engineering Science, 2007, 41(10): 1759-1762.

[7] 杨华勇,邢彤,龚国芳.变转速泵控模拟盾构刀盘驱动系统研究[J].浙江大学学报:工学版,2010,44(2): 373-378.
YANG Huayong, XING Tong, GONG Guofang. Variable speed pump control system for driving cutter head of test shield tunneling machine[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(2): 373-378.
[8] 卢宁,付永领,孙新学. 基于AMEsim的双压力柱塞泵的数字建模与热分析[J]. 北京航空航天大学学报, 2006, 32(9): 1055-1058.
LU Ning, FU Yongling, SUN Xinxue. Digital modeling of double press axial piston pump and its thermal analysis basing on AMEsim[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(9): 1055-1058.
[9] GUBITOSA M, ANTHONIS J, ALBARELLO N, et al. A computer aided engineering approach for the optimal design of an active suspension system[C]∥Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. San Diego: ASME, 2009: 837-847.
[10] RIDEOUT D G, ANDERSON R J. Experimental testing and mathematical modeling of the interconnected hydragas suspension system[J]. SAE, 2003-01-0312.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[12] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[13] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[14] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.