Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1370-1375    DOI: 10.3785/j.issn.1008973X.2011.08.007
机械工程     
精密注塑机保压压力的新型模糊自校正控制
王硕1, 应济1, 陈子辰1, 冯宇2
1.浙江大学 现代制造工程研究所,浙江省先进制造技术重点研究实验室,浙江 杭州 310027; 2.北卡罗莱纳州立大学 机械工程系,计算物理实验室,美国 北卡罗莱纳州 27695
A new fuzzy self-tuning method for controlling packing pressure of a high-accuracy injection molding machine
WANG Shuo1, YING Ji1, CHEN Zi-chen1, FENG Yu2
1. Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Institute of Modern Manufacturing Engineering, Zhejiang University, Hangzhou 310027, China; 2. Computational MultiPhysics Laboratory, Department of Mechanical Engineering, North Carolina State University, NC, 27695, USA
 全文: PDF  HTML
摘要:

针对传统注射成型装备中保压压力控制精度不高的问题,提出采用伺服电机驱动定量泵的复合系统.伺服电机配合注塑机不同工艺过程输出相应转速,提高控制性能,消除高压节流.建立注塑机注射过程的数学模型,分析料筒内螺杆所受熔融态塑料的黏性摩擦力,提出一种新型模糊自校正(FST)控制算法.该算法在模糊控制收敛迅速,鲁棒性强的特点基础上,结合自校正控制算法,提高系统的响应速度,降低注塑机保压过程中的压力超调,消除系统的滞后.通过与传统PID算法对比实验结果表明,该算法能够提高保压压力的响应速度和控制精度,从而达到精密注塑的要求.

Abstract:

According to the poor packing pressure control accuracy of the traditional injection molding machines, this paper presents a new injection system using servo motor-driving fixed pump which can provide different speed with the given injection process. The mathematical models were established based on non-Newtonian fluid dynamics for the hydraulic system and the viscous force of melted plastic between the barrel and screw. Based on the theoretical analysis, a new fuzzy selftuning(FST) method was proposed which combined the advantages of both the fuzzy control and the self-tuning control. The experimental data with packing pressure control showed that compared with the traditional PID algorithm, the FST algorithm has better performance with slighter overshooting, quicker response, shorter transient time and better control accuracy.

出版日期: 2011-09-08
:  TP 273  
基金资助:

国家“十一五”科技支撑计划资助项目(2007BAF13B04).

通讯作者: 应济,男,副研究员.     E-mail: yingji_zju@yahoo.cn
作者简介: 王硕(1984—),男,博士生,从事注塑机控制技术及智能检测技术研究. E-mail: sonic1822@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王硕, 应济, 陈子辰, 冯宇. 精密注塑机保压压力的新型模糊自校正控制[J]. J4, 2011, 45(8): 1370-1375.

WANG Shuo, YING Ji, CHEN Zi-chen, FENG Yu. A new fuzzy self-tuning method for controlling packing pressure of a high-accuracy injection molding machine. J4, 2011, 45(8): 1370-1375.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2011.08.007        https://www.zjujournals.com/eng/CN/Y2011/V45/I8/1370

[1] CHEN Z B, TURNG L S. A review of current developments in process and quality control for injection molding [J]. Advances in Polymer Technology, 2005, 24(3): 165-182.

[2] TAN K K, TANG J C. Learningenhanced PI control of ram velocity in injection molding machines [J]. Engineering Applications of Artificial Intelligence, 2002, 15: 65-72.

[3] YANG Y, GAO F R. Adaptive control of the filling velocity of thermoplastics injection molding [J]. Control Engineering Practice, 2000, 8: 1285-1296.

[4] ZHENG D N, ALLEYNE A. Modeling and control of an electrohydraulic injection molding machine with smoothed filltopack transition [J]. Transactions of ASME, 2003, 125: 154-163.

[5] RAFIZADEH M, PATTERSON W I, KAMAL M R. Physicallybased model of thermoplastics injection molding for control applications [J]. Int.Polymer Processing, (S0930777X), 1996, 11(4): 352-361.

[6] CHEN Z B, TURNG L S. Adaptive online qulity control for injectionmolding by monitoring and controlling mold separation [J]. Polymer Engineering and Science, 2006, 10: 569-580.

[7] ZHOU J, TURNG L S. Adaptive multiobjective optimization of process conditions for injection molding using a gaussian process approach [J]. Advances in Polymer Technology, 2007, 26(2): 71-85.

[8] GAO Y H, TURNG L S, WANG X C. Adaptive geometry and process optimization for injection molding using the kriging surrogate model trained by numerical simulation [J]. Advances in Polymer Technology, 2008, 27(1): 1-16.

[9] 应济,李长勇. 注塑机后模板顺序优化设计研究 [J]. 浙江大学学报:工学版,2006,40(6): 937-941.

YING Ji,Li CHANGyong. Sequential optimization design research on rear mould board of injection machine [J]. Journal of Zhejiang University: Engineering Science, 2006,40(6): 937-941.

[10] LIU T, GAO F R. Identification of integrating and unstable process from relay feedback [J]. Computers and Chemical Engineering, 2008, 32: 3038-3056.

[11] SHI J, GAO F R, WU T J. Singlecycle and multicycle generalized 2D model predictive iterative learning control(2DGPILC) schemes for batch process [J]. Journal of Process Control, 2007, 17: 715-727.

[12] 吴乐彬,王宣银,李强. 对接模拟并联六自由度平台的模糊免疫PID控制 [J]. 浙江大学学报:工学版,2008,42(3): 387-391.

WU Lebin, WANG Xuanyin, LI Qiang. Fuzzyimmune PID control of a 6DOF parallel platform for docking simulation [J]. Journal of Zhejiang University: Engineering Science, 2008,42(3): 387-391.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.