Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 730-740    DOI: 10.3785/j.issn.1008-973X.2025.04.008
土木与建筑工程     
锯齿状毛细阻滞覆盖层渗漏量的参数研究
郑雅华1(),刘红位2,冯嵩1,*()
1. 福州大学 土木工程学院,福建 福州 350108
2. 福州大学 紫金地质与矿业学院,福建 福州 350108
Numerical parametric study of percolation through capillary barrier cover with zipper-shape interface
Yahua ZHENG1(),Hongwei LIU2,Song FENG1,*()
1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
 全文: PDF(1880 KB)   HTML
摘要:

在传统毛细阻滞覆盖层的粗-细粒土界面处添加多个方形碎石垄,形成锯齿状的毛细阻滞覆盖层. 锯齿状毛细阻滞界面有利于在顺坡方向形成多个导排长度,主动控制底部渗漏位置. 在碎石垄下方设置的导排盲沟收集部分渗漏雨水,降低进入固废堆体的渗漏量. 考虑碎石垄尺寸、细粒土层厚度、覆盖层坡度、雨型、极端降雨和长时间降雨等参数,对比锯齿状毛细阻滞覆盖层与传统毛细阻滞覆盖层的性能. 结果表明,锯齿状毛细阻滞覆盖层的渗漏量比传统毛细阻滞覆盖层的低17%~25%;无论是在极端降雨情况下,还是在长时间降雨情况下,锯齿状毛细阻滞覆盖层的渗漏量均小于国际年渗漏量标准. 碎石垄高度超过0.2 m或碎石垄边长和间距增加会导致锯齿状毛细阻滞覆盖层的渗漏量增加,底部渗漏量随覆盖层坡度和细粒土层厚度的提高逐渐减小. 2种覆盖层在不同降雨模式下的渗漏量由大到小依次为超前型降雨、等强型、中心型模式、滞后型, 锯齿状毛细阻滞覆盖层的渗漏量受雨型的影响较传统毛细阻滞覆盖层的小.

关键词: 锯齿状覆盖层水分运移毛细阻滞渗漏有限元    
Abstract:

A novel capillary barrier cover was proposed, which added multiple gravel segments to the traditional cover with capillary barrier effects (CCBE) to form a zipper-shape CCBE between fine-grained and coarse-grained soils. The zipper-shape interface along the slope was designed to help the formation of several diversion lengths while controlling water percolation location. The drainage ditch arranged below the gravel segment was effectively used to reduce the water percolation into the buried wastes underneath the cover. Considering the gravel segment sizes, the thickness of fine-grained soils, the slope of CCBE, rainfall pattern, and extreme and prolonged rainfall, the hydraulic performance of the proposed zippered CCBE with the traditional one was compared. Results showed that the water percolation of zippered CCBE was 17%-25% lower than the traditional one. In both extreme and prolonged rainfall conditions, the percolation of the zippered CCBE was lower than the international annual percolation standard. Increased percolation of the zippered CCBE was observed when the gravel segment height exceeded 0.2 m or the gravel segment width and spacing augmented, and water percolation gradually decreased with the increase of the thickness of fine-grained soils and the slope of landfill cover. Among the two types of CCBE, percolation varies under different rainfall patterns, ranked from highest to lowest: the advanced rainfall pattern, the uniform pattern, the central pattern, and the delayed pattern. Compared to the traditional CCBE, the zippered one is less affected by the rainfall pattern in terms of water percolation.

Key words: zippered cover    water movement    capillary barrier    percolation    finite element
收稿日期: 2024-01-25 出版日期: 2025-04-25
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(52178320, 42177120);国家重点研发计划资助项目(2019YFC1806003).
通讯作者: 冯嵩     E-mail: 201982010019@sdust.edu.cn;sfengaa@connect.ust.hk
作者简介: 郑雅华(1996—),女,硕士生,从事非饱和土渗流研究. orcid.org/0009-0009-4439-4789. E-mail:201982010019@sdust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郑雅华
刘红位
冯嵩

引用本文:

郑雅华,刘红位,冯嵩. 锯齿状毛细阻滞覆盖层渗漏量的参数研究[J]. 浙江大学学报(工学版), 2025, 59(4): 730-740.

Yahua ZHENG,Hongwei LIU,Song FENG. Numerical parametric study of percolation through capillary barrier cover with zipper-shape interface. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 730-740.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/730

图 1  传统毛细阻滞覆盖层数值模型土水特征曲线与水力传导率曲线
图 2  传统毛细阻滞覆盖层二维数值模型有限元网格
图 3  传统毛细阻滞覆盖层不同参数的实测与数值计算结果
图 4  锯齿状毛细阻滞覆盖层水分运移示意图
图 5  锯齿状毛细阻滞覆盖层二维数值模型
图 6  锯齿状毛细阻滞覆盖层数值模型土水特征曲线与水力传导率曲线
工况β/(°)Δ/mYR/(mm·d?1)h/mb/ma /mnt/d
A1180.9等强型300~6
B1180.9等强型300.1~0.50.54.640~6
B20.20.3~1.84.64
B30.20.53.6~5.44~6
C1180.7~1.2等强型300.180.33.660~6
C2
D113~230.9等强型300.180.33.660~6
D2
E1180.7等强型26.20.180.33.660~5
E2超前型8.73~52.40~2,3~5
E3中心型8.73~52.40~2,3~4,5
E4滞后型8.73~52.40~3,4~5
F1180.9等强型2500.180.33.661
F2
表 1  毛细阻滞覆盖层的数值模拟方案
图 7  碎石垄高度对渗漏与排水的影响
图 8  孔隙水压力云图和水流速度
图 9  碎石垄间距对渗漏与排水的影响
图 10  碎石垄边长对渗漏与排水的影响
图 11  渗漏量比值与总排水量比值随碎石垄高度、边长与间距的变化
水平h/mb/ma/m
10.180.35.4
20.300.64.2
30.601.03.6
表 2  碎石垄的标准正交试验表
因素h/mb/ma/mPe/m
10.180.35.48.58
20.180.64.28.99
30.181.03.610.03
40.300.33.68.80
50.300.65.49.89
60.301.04.211.48
70.600.34.29.32
80.600.63.610.63
90.601.05.413.56
k19.28.910.68
k210.059.839.93
k311.1711.699.82
Ri1.972.790.86
最优方案0.180.33.6
表 3  正交试验的模拟结果
图 12  极端降雨与长时间降雨情况下不同覆盖层中的水分分布
图 13  细粒土层厚度对渗漏与排水的影响
图 14  坡度对渗漏与排水的影响
图 15  雨型对渗漏与排水的影响
1 詹良通, 冯嵩, 李光耀, 等 生态型土质覆盖层工作原理及其在垃圾填埋场封场治理中的应用[J]. 环境卫生工程, 2022, 30 (4): 1- 20
ZHAN Liangtong, FENG Song, LI Guangyao, et al Working principle of ecological soil covers and its application in landfill sealing treatment[J]. Environmental Sanitation Engineering, 2022, 30 (4): 1- 20
2 王亮, 谢海建, 吴家葳, 等 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报: 工学版, 2021, 55 (3): 519- 529
WANG Liang, XIE Haijian, WU Jiawei, et al Equivalent model for pollutant transport parameters of layered landfill liners[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 519- 529
3 CUARTAS M, LÓPEZ A, PÉREZ F, et al Analysis of landfill design variables based on scientific computing[J]. Waste Management, 2018, 71: 287- 300
doi: 10.1016/j.wasman.2017.10.043
4 焦卫国, 詹良通, 季永新, 等 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1101- 1109
JIAO Weiguo, ZHAN Liangtong, JI Yongxin, et al Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1101- 1109
5 焦卫国, 詹良通, 兰吉武, 等 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2128- 2134
JIAO Weiguo, ZHAN Liangtong, LAN Jiwu, et al Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2128- 2134
6 LACROIX VACHON B, ABDOLAHZADEH A M, CABRAL A R Predicting the diversion length of capillary barriers using steady state and transient state numerical modeling: case study of the Saint-Tite-des-Caps landfill final cover[J]. Canadian Geotechnical Journal, 2015, 52 (12): 2141- 2148
doi: 10.1139/cgj-2014-0353
7 STORMONT J C, MORRIS C E Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123 (5): 364- 366
doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)
8 李光耀, 刘思达, 李鹤, 等 增强型集气覆盖层闭气能力影响因素及优化布置[J]. 浙江大学学报: 工学版, 2024, 58 (1): 121- 129
LI Guangyao, LIU Sida, LI He, et al Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 121- 129
9 NG C W W, GUO H W, XUE Q A novel environmentally friendly vegetated three-layer landfill cover system using construction wastes but without a geomembrane[J]. Indian Geotechnical Journal, 2021, 51 (3): 460- 466
doi: 10.1007/s40098-021-00542-7
10 詹良通, 贾官伟, 邓林恒, 等 湿润气候区固废堆场封场土质覆盖层性状研究[J]. 岩土工程学报, 2012, 34 (10): 1812- 1818
ZHAN Liangtong, JIA Guanwei, DENG Linheng, et al Performance of earthen final covers of landfills in humid areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (10): 1812- 1818
11 焦卫国, 庹斌, 张松, 等 西北非湿润区毛细阻滞覆盖层防渗性能验证与长期服役高危易渗气象段分析[J]. 岩土力学, 2023, 44 (Suppl.1): 539- 547
JIAO Weiguo, TUO Bin, ZHANG Song, et al Anti-seepage performance verification and analysis of high-risk permeable meteorological period of capillary barrier cover in Northwest non humid area[J]. Rock and Soil Mechanics, 2023, 44 (Suppl.1): 539- 547
12 邓林恒, 詹良通, 陈云敏, 等 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34 (1): 75- 80
DENG Linheng, ZHAN Liangtong, CHEN Yunmin, et al Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (1): 75- 80
13 陈冠一, 肖杰, 陈强, 等 不同毛细阻滞覆盖层处治膨胀土边坡的渗流及稳定性研究[J]. 中南大学学报: 自然科学版, 2022, 53 (1): 199- 213
CHEN Guanyi, XIAO Jie, CHEN Qiang, et al Study on seepage and stability of expansive soil slope treated by different capillary barrier cover layers[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 199- 213
14 张文杰, 耿潇 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38 (3): 454- 459
ZHANG Wenjie, GENG Xiao Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (3): 454- 459
doi: 10.11779/CJGE201603008
15 刘川顺, 赵慧, 罗继武 垃圾填埋腾发覆盖系统渗沥控制试验和数值模拟[J]. 环境科学, 2009, 30 (1): 289- 296
LIU Chuanshun, ZHAO Hui, LUO Jiwu Experiment and numerical simulation of percolation control using evapotranspirative landfill cover system[J]. Environmental Science, 2009, 30 (1): 289- 296
doi: 10.3321/j.issn:0250-3301.2009.01.048
16 ROSS B The diversion capacity of capillary barriers[J]. Water Resources Research, 1990, 26 (10): 2625- 2629
doi: 10.1029/WR026i010p02625
17 冯嵩, 王冲, 刘毓氚, 等. 一种促进截流排水与填埋气均匀分布的毛细阻滞型覆盖层结构: 202210767892.2 [P]. 2022−06−30.
18 BUSSIÈRE B, AUBERTIN M, CHAPUIS R P The behavior of inclined covers used as oxygen barriers[J]. Canadian Geotechnical Journal, 2003, 40 (3): 512- 535
doi: 10.1139/t03-001
19 COMSOL. COMSOL multiphysics reference manual (Version 5.2) [EB/OL]. (2015−11−16)[2023−10−01]. https://www.comsol.com/documentation.
20 焦卫国. 西北黄土/碎石覆盖层水分存储-释放机理及防渗设计方法[D]. 杭州: 浙江大学, 2015: 1–258.
JIAO Weiguo. Water storage and release of loess/gravel cover and seepage prevention design method in northwest of China [D]. Hangzhou: Zhejiang University, 2015: 1–258.
21 贾官伟. 固废堆场终场土质覆盖层中水分运移规律及调控方法研究[D]. 杭州: 浙江大学, 2010: 1–198.
JIA Guanwei. Study on the water transport in the landfill earthen final cover and its controlling method [D]. Hangzhou: Zhejiang University, 2010: 1–198.
22 中华人民共和国住房和城乡建设部. 生活垃圾卫生填埋处理技术规范: GB50869—2013 [S]. 北京: 中国计划出版社, 2013.
23 STEENHUIS T S, PARLANGE J Y, KUNG K S Comment on “the diversion capacity of capillary barriers” by benjamin ross[J]. Water Resources Research, 1991, 27 (8): 2155- 2156
doi: 10.1029/91WR01366
24 郭轩, 徐忠根, 赵亚涛, 等 CFRP-木结构波纹钢填板螺栓节点力学性能正交试验研究[J]. 浙江大学学报: 工学版, 2024, 58 (4): 847- 856
GUO Xuan, XU Zhonggen, ZHAO Yatao, et al Orthogonal experimental study on mechanical properties of CFRP-bolted timber joints with slotted-in corrugated steel plates[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 847- 856
25 杨虎, 刘琼荪, 钟波. 数理统计[M]. 北京: 高等教育出版社, 2004: 168–170.
26 MORRIS C E, STORMONT J C Parametric study of unsaturated drainage layers in a capillary barrier[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (12): 1057- 1065
doi: 10.1061/(ASCE)1090-0241(1999)125:12(1057)
27 黄安平. 高填方边坡稳定性影响因素敏感性分析[D]. 兰州: 兰州理工大学, 2020: 1–71.
HUANG Anping. Sensitivity analysis of factors affecting the stability of high fill slope [D]. Lanzhou: Lanzhou University of Technology, 2020: 1–71.
28 李晓康, 李旭, 王菲, 等. 毛细阻滞覆盖层储水能力和击穿时间试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 1501–1511.
LI Xiaokang, LI Xu, WANG Fei, et al. Experimental study on water storage capacity and breakthrough time of capillary barrier cover [J]. Chinese Journal of Rock Mechanics and Engineering , 2022, 41(7): 1501–1511.
29 AUBERTIN M, CIFUENTES E, APITHY S A, et al Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46 (10): 1146- 1164
doi: 10.1139/T09-050
30 李宁, 潘行, 张茂建, 等 降雨形式对毛细阻滞覆盖层防渗性能的影响研究[J]. 岩土力学, 2022, 43 (6): 1546- 1556
LI Ning, PAN Hang, ZHANG Maojian, et al Influence of rainfall patterns on anti-seepage performance of capillary barrier covers[J]. Rock and Soil Mechanics, 2022, 43 (6): 1546- 1556
[1] 邢国华,陆勇健,苗鹏勇,陈思锦. 基于改进遗传算法的临时转播塔结构优化设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 469-479.
[2] 吴洋,肖磊,王玮彦,许金鑫,杜原,杨泊莘,安琦. 电梯安全钳制动块与导轨接触应力的有限元计算方法[J]. 浙江大学学报(工学版), 2025, 59(1): 109-119.
[3] 张兴标,王涛,姚森,叶华文,王路,白伦华. 大跨度公铁两用斜拉-悬索协作体系桥断索动力响应[J]. 浙江大学学报(工学版), 2024, 58(9): 1874-1885.
[4] 王子业,谭勇,龙莹莹. 不同渗漏位置下管道渗蚀物理模型试验及细观机理研究[J]. 浙江大学学报(工学版), 2024, 58(6): 1209-1220.
[5] 罗易飞,胡彬,赵鑫,温泽峰. 缩尺车轮-环轨滚动接触与磨耗特性仿真分析[J]. 浙江大学学报(工学版), 2024, 58(6): 1275-1284.
[6] 余俊,李东凯. 隧道拱顶渗漏稳态渗流场的解析研究[J]. 浙江大学学报(工学版), 2024, 58(4): 838-846.
[7] 周敉,冯昭,张鹏利,秦伟. 大流量斜拉压力输水管桥振动台模型试验研究[J]. 浙江大学学报(工学版), 2024, 58(10): 2149-2161.
[8] 金俊超,景来红,杨风威,宋志宇,尚朋阳. 脆塑性迭代逼近算法的改进[J]. 浙江大学学报(工学版), 2023, 57(9): 1706-1717.
[9] 王玲茂,赵唯坚. 基于肋尺度精细化建模的机械锚固钢筋拉拔性能模拟[J]. 浙江大学学报(工学版), 2023, 57(8): 1573-1584.
[10] 陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.
[11] 谢国庆,王密,孔德文. 新型高强硅酸盐墙板钢框架抗震性能[J]. 浙江大学学报(工学版), 2023, 57(7): 1402-1409.
[12] 郭进,陈家旺,王豪,王荧,王威,方玉平,周朋. 沉积物上覆水界面取样器及配套转移装置设计[J]. 浙江大学学报(工学版), 2023, 57(5): 1021-1029.
[13] 鲍佳文,高强,唐林,赵唯坚. 钢筋套筒灌浆连接拉伸性能的精细有限元分析[J]. 浙江大学学报(工学版), 2023, 57(4): 814-823.
[14] 陈廷国,郭召迪. 具有杆间扭转约束的轴心压杆稳定性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 598-605.
[15] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.