Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 1021-1029    DOI: 10.3785/j.issn.1008-973X.2023.05.018
机械工程     
沉积物上覆水界面取样器及配套转移装置设计
郭进(),陈家旺*(),王豪,王荧,王威,方玉平,周朋
浙江大学 海洋学院,浙江 舟山 316021
Design of sampler and associated transfer device of interface between sediment and overlying water
Jin GUO(),Jia-wang CHEN*(),Hao WANG,Ying WANG,Wei WANG,Yu-ping FANG,Peng ZHOU
Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(8017 KB)   HTML
摘要:

针对甲烷渗漏区渗漏通量的计算、非保压非气密取样设备导致的样品气体散失、微生物死亡和有机成分分解等问题,设计一种基于重载遥控无人潜水器(ROV)机械手操作的3 000 m级沉积物含上覆水保压取样器,以及与取样器配套的保压分离转移装置. 该取样器可以实现样品的低扰动原位封装. 在保压的工况下,转移装置可以实现上覆水的分离以及沉积物至不同培养釜的转移. 基于阈值压力可调的泄压阀,保压转移装置通过压缩内部体积转移上覆水和通过二次取样转移沉积物. 结果表明:取样器在南海的3次海试中分别获得了超过700 mL的保压样品,在3 000 m的海试中2 h压降仅为1.53 MPa,海试验证了取样器的取样率及保压能力. 在30 MPa高压工况下,转移装置完成了沉积物及上覆水分离转移,在转移过程中保持压力波动不超过4.8%. 在转移完成后,培养釜中样品的压力相对于取样器中的样品初始压力下降仅为4.7%.

关键词: 甲烷渗漏沉积物上覆海水保压取样保压转移海试    
Abstract:

A 3000 m-class sediment including overlying water pressure-retaining sampler based on heavy-duty remote operated vehicle (ROV) robotic operation and transfer derice matched with the sampler were proposed aiming at the calculation of the leakage flux in the methane leakage area, sample gas composition loss, microbial mortality and organic component decomposition caused by non-pressure-retaining non-gas-tight sampling device. The sampler could achieve low disturbance in the situ packaging of samples. The transfer device realized the separation of overlying water and the transfer of sediment to different incubators under the pressure-retaining condition. The pressure-retaining transfer device transferred the overlying water by compressing the internal volume and transferred the sediment by secondary sampling based on the threshold pressure adjustable relief valve. The results showed that the sampler obtained more than 700 mL pressure-retaining samples in each of the three sea trials in the South China Sea and the pressure drop of sampler was only 1.53 MPa in the 3 000 m sea trial. The sampling rate and the pressure retaining capacity of the sampler were verified in the sea trial. The transfer device completed the transfer of sediment and overlying water separation under 30 MPa high pressure conditions and kept the pressure fluctuation not more than 4.8% during the transfer process. The pressure in the culture kettle decreased only 4.7% relative to the pressure in the sampler after the transfer was completed.

Key words: methane leakage    sediment    overlying water    pressure-retaining sampling    pressure-retaining transferring    sea trial
收稿日期: 2022-10-08 出版日期: 2023-05-09
CLC:  P 754  
基金资助: 国家自然科学基金资助项目(42276191); 海南省财政科技计划资助项目(ZDKJ202019)
通讯作者: 陈家旺     E-mail: gojin@zju.edu.cn;arwang@zju.edu.cn
作者简介: 郭进(1998—),男,博士生,从事深海技术与装备研究. orcid.org/0000-0002-2726-5936. E-mail: gojin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭进
陈家旺
王豪
王荧
王威
方玉平
周朋

引用本文:

郭进,陈家旺,王豪,王荧,王威,方玉平,周朋. 沉积物上覆水界面取样器及配套转移装置设计[J]. 浙江大学学报(工学版), 2023, 57(5): 1021-1029.

Jin GUO,Jia-wang CHEN,Hao WANG,Ying WANG,Wei WANG,Yu-ping FANG,Peng ZHOU. Design of sampler and associated transfer device of interface between sediment and overlying water. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1021-1029.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.018        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/1021

图 1  取样器整体结构示意图
参数 取值
尺寸/mm 530×350×650
质量/kg 30
工作深度/m 3 000
取样直径/mm 56
取样体积/mL ≥600
表 1  取样器基本参数
参数 符号 取值
屈服强度/MPa $ {\mathrm{\sigma }}_{\mathrm{s}} $ 725
拉伸强度/MPa $ {\sigma }_{\mathrm{b}} $ 930
安全因子 $ n $ 2.5
许用应力/MPa ? 290
表 2  不锈钢(17-4PH)的力学参数
图 2  沉积物及上覆水保压分离转移装置
图 3  推送转移系统剖视图
图 4  培养釜系统剖视图
图 5  沉积物上覆水界面取样器工作原理
图 6  沉积物上覆水界面取样器与转移系统配合后模型
图 7  沉积物转移至培养釜示意图
图 8  沉积物上覆水界面取样器的海试
图 9  基于机械手的海底采样过程
图 10  取样器在海底获得的沉积物、上覆水、溶解气样品
图 11  3个站点采样后2小时内采样器的压降
图 12  沉积物上覆水保压转移装置性能测试
图 13  转移装置转移样品过程中的压力波动
图 14  沉积物与上覆水样品转移结果
14 KAWASAKI M, UMEZU S, YASUDA M Pressure temperature core sampler (PTCS)[J]. Journal of the Japanese Association for Petroleum Technology, 2006, 71 (1): 139- 147
doi: 10.3720/japt.71.139
15 SCHULTHEISS P, HOLLAND M, HUMPHREY G Wireline coring and analysis under pressure: recent use and future developments of the HYACINTH system[J]. Scientific Drilling, 2009, 7: 44- 50
doi: 10.5194/sd-7-44-2009
16 HAO Z B, HUANG W Q, QIN J X, et al Estimation technique for gas hydrate saturation of pressure core samples[J]. Chinese Journal of Geophysics, 2013, 56 (11): 3917- 3921
17 SCHULTHEISS P J, FRANCIS T J G, HOLLAND M, et al Pressure coring, logging and subsampling with the HYACINTH system[J]. Geological Society, London, Special Publications, 2006, 267 (1): 151- 163
doi: 10.1144/GSL.SP.2006.267.01.11
18 MATSUMOTO R, RYU B J, LEE S R, et al Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region[J]. Marine and Petroleum Geology, 2011, 28 (10): 1751- 1767
doi: 10.1016/j.marpetgeo.2011.09.009
19 ZHU H, CHEN J W, REN Z Q, et al A new technique for high-fidelity cutting technology for hydrate samples[J]. Journal of Zhejiang University: Science A, 2022, 23 (1): 40- 54
doi: 10.1631/jzus.A2100188
20 ZHANG P, CHEN J, GAO Q, et al Research on a temperature control device for seawater hydraulic systems based on a natural gas hydrate core sample pressure-retaining and transfer device[J]. Energies, 2019, 12 (20): 3990- 4010
doi: 10.3390/en12203990
21 CHEN J W, GAO Q L, LIU H H, et al Development of a pressure-retained transfer system of seafloor natural gas hydrates[J]. Environmental Geotechnics, 2019, 8 (8): 529- 538
22 SCHULTHEISS P J, WEAVER P P E. Multi sensor core logging for science and industry [C]// Oceans 92 Proceedings M Mastering the Oceans Through Technology: 2. IEEE. Newport RI: IEEE, 1992: 608-613.
23 DICKENS G R, SCHROEDER D, HINRICHS K U. The pressure core sampler (PCS) on ODP leg 201: general operations and gas release [C]// Proceedings of the Ocean Drilling Program, Initial Reports: 201 Ocean Drilling Program College Station. Falkland Islands, TX: [s.n.], 2003: 1-22.
24 PRIEST J A, HAYLEY J L, SMITH W E, et al PCATS triaxial testing: geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108: 424- 438
doi: 10.1016/j.marpetgeo.2018.07.005
25 LIU J, CHEN J, LIU F, et al. Development of one pressure core transfer device for one long gravity-piston pressure retained corer [C]// 2014 Oceans-St. John’s. IEEE. St. John's, NL: IEEE, 2014: 1-6.
26 GUO J, WANG Y, WANG W, et al. Pressure-retaining sampler for sediment including overlying water based on heavy duty ROV-Jellyfish [J/OL]. Applied Ocean Research, 2022, 128: 103354. https://www.sciencedirect.com/science/article/pii/S0141118722002851.
1 GORNITZ V, FUNG I Potential distribution of methane hydrates in the world’s oceans[J]. Global Biogeochemical Cycles, 1994, 8 (3): 335- 347
doi: 10.1029/94GB00766
2 SUESS E, TORRES M E, BOHRMANN G Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin[J]. Earth and Planetary Science Letters, 1999, 170 (1-2): 1- 15
doi: 10.1016/S0012-821X(99)00092-8
3 ROBERTS H H, AHARON P Hydrocarbon-derived carbonate buildups of the northern gulf of Mexico continental slope: a review of submersible investigations[J]. Geo-Marine Letters, 1994, 14 (2-3): 135- 148
4 DENG Y, CHEN F, GUO Q Possible links between methane seepages and glacial-interglacial transitions in the South China Sea[J]. Geophysical Research Letters, 2021, 48 (8): 1- 10
5 DENG Y, CHEN F, HU Y. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea [J]. Ore Geology Reviews, 2020, 125: 103701.
6 HE S, PENG Y, JIN Y Review and analysis of key techniques in marine sediment sampling[J]. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33 (1): 66- 83
doi: 10.1186/s10033-020-00480-0
7 TRÉHU A M Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19: 124- 142
doi: 10.5670/oceanog.2006.11
8 ZHU H, LIU Q, DENG J Pressure and temperature preservation techniques for gas-hydrate-bearing sediments sampling[J]. Energy, 2011, 36 (7): 4542- 4551
doi: 10.1016/j.energy.2011.03.053
9 JUTZELER M, WHITE J D L, TALLING P J Coring disturbances in IODP piston cores with implications for offshore record of volcanic events and the Missoula megafloods[J]. Geochemistry, Geophysics, Geosystems, 2014, 15 (9): 3572- 3590
doi: 10.1002/2014GC005447
10 CHEN J W, FAN W, BINGHAM B A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method[J]. Energies, 2013, 6 (7): 3353- 3372
doi: 10.3390/en6073353
11 CHEN J, HUANG Y, LIN Y, et al A novel sediment pressure sampling device carried by a hadal-rated lander[J]. Journal of Marine Science and Engineering, 2020, 8 (11): 839
doi: 10.3390/jmse8110839
12 WANG H, RUAN D R, CAO C, et al Collection sediment from Mariana trench with a novel pressure-retaining sampler[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2022, 183: 103740
doi: 10.1016/j.dsr.2022.103740
13 ZHU H Y, LIU Q Y, WONG G R, et al A pressure and temperature preservation system for gas-hydrate-bearing sediments sampler[J]. Petroleum Science and Technology, 2013, 31 (6): 652- 662
doi: 10.1080/10916466.2010.531352
27 WANG S, WU S, YANG C. The pressure compensation technology of deep-sea sampling based on the real gas state equation [J]. Acta Oceanologica Sinica, 2020, 39(8): 88-95.
28 王林 皮囊式蓄能器的选用体会[J]. 液压气动与密封, 2009, 2009 (6): 49- 50
WANG Lin Selection experience of bag accumulator[J]. Hydropneumatic and Sealing, 2009, 2009 (6): 49- 50
29 ABID K, SPAGNOLI G, TEODORIU C, et al Review of pressure coring systems for offshore gas hydrates research[J]. Underwater Technology, 2015, 33 (1): 19- 30
doi: 10.3723/ut.33.019
30 PEOPLES L M, NORENBERG M, PRICE D, et al A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 143: 50- 57
doi: 10.1016/j.dsr.2018.11.010
31 TABOR P S, DEMING J W, OHWADA K, et al A pressure-retaining deep ocean sampler and transfer system for measurement of microbial activity in the deep sea[J]. Microbial Ecology, 1981, 7 (1): 51- 65
doi: 10.1007/BF02010478
[1] 王豪,陈家旺,郭进,张培豪,王荧,周朋,方玉平. 全海深宏生物保压取样装置设计与实验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2077-2083.
[2] 王辉, 郇筱林, 陈宇琪, 周博, 薛世峰, 林英松. 考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型[J]. 浙江大学学报(工学版), 2021, 55(9): 1734-1743.
[3] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[4] 李世伦 程毅 秦华伟 顾临怡 叶瑛 邱敏秀. 重力活塞式天然气水合物保真取样器的研制[J]. J4, 2006, 40(5): 888-892.
[5] 朱亮 顾临怡 秦华伟. 深海沉积物保真采样技术及应用[J]. J4, 2005, 39(7): 1060-1063.