机械工程 |
|
|
|
|
基于损伤区域融合变换的轴承鼓形滚子表面损伤检测方法 |
艾青林( ),崔景瑞,吕冰海,童桐 |
浙江工业大学 特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江 杭州 310023 |
|
Surface defect detection method for bearing drum-shaped rollers based on fusion transformation of defective area |
Qing-lin AI( ),Jing-rui CUI,Bing-hai LV,Tong TONG |
Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
艾青林,崔景瑞,吕冰海,童桐. 基于损伤区域融合变换的轴承鼓形滚子表面损伤检测方法[J]. 浙江大学学报(工学版), 2023, 57(5): 1009-1020.
Qing-lin AI,Jing-rui CUI,Bing-hai LV,Tong TONG. Surface defect detection method for bearing drum-shaped rollers based on fusion transformation of defective area. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1009-1020.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.017
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/1009
|
1 |
何斌, 戚佳杰, 黎明和 小波分析在滚动轴承故障诊断中的应用研究[J]. 浙江大学学报:工学版, 2009, 43 (7): 1218- 1221 HE Bin, QI Jia-jie, LI Ming-he Application and research of wavelet analysis in fault diagnosis of roller bearings[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (7): 1218- 1221
|
2 |
梁子千, 玄文博, 王婷, 等 基于二维阻抗特征的管道环焊缝缺陷涡流检测[J]. 仪器仪表学报, 2017, 38 (9): 2138- 2145 LIANG Zi-qian, XUAN Wen-bo, WANG Ting, et al Eddy current NDt for the cracks of girth welds of pipes based on 2D impedance characteristics[J]. Chinese Journal of Scientific Instrument, 2017, 38 (9): 2138- 2145
doi: 10.3969/j.issn.0254-3087.2017.09.006
|
3 |
HANSEN J The eddy current inspection method[J]. Insight, 2004, 46 (5): 279- 281
doi: 10.1784/insi.46.5.279.55563
|
4 |
刘旭, 夏金东, 弓乐, 等 射频信号在超声检测缺陷识别中的应用研究[J]. 机械工程学报, 2002, 38 (4): 84- 87 LIU Xu, XIA Jin-dong, GONG Yue, et al Study on the application of radio-frequency signal in flaw classification of ultrasonic testing[J]. Chinese Journal of Mechanical Engineering, 2002, 38 (4): 84- 87
doi: 10.3321/j.issn:0577-6686.2002.04.018
|
5 |
杨辰龙, 周晓军 复杂曲面工件的超声无损检测系统研制[J]. 中国机械工程, 2005, 16 (18): 1622- 1625 YANG Chen-long, ZHOU Xiao-jun Development of ultrasonic none-destructive test systems for complex curved surface parts[J]. China Mechanical Engineering, 2005, 16 (18): 1622- 1625
doi: 10.3321/j.issn:1004-132X.2005.18.007
|
6 |
HAYNES C, TODD M, NADABE T, et al Monitoring of bearing failure in composite bolted connections using ultrasonic guided waves: a parametric study[J]. Structural Health Monitoring, 2014, 13 (1): 94- 105
doi: 10.1177/1475921713510756
|
7 |
王姮, 卜燕, 张华, 等 基于分形维数的磁痕图像缺陷检测[J]. 计算机应用研究, 2015, 32 (2): 603- 605 WANG Heng, BU Yan, ZHANG Hua, et al Defect detection of magnetic particle indication image based on fractal dimension[J]. Application Research of Computers, 2015, 32 (2): 603- 605
doi: 10.3969/j.issn.1001-3695.2015.02.063
|
8 |
陈昊, 张奔, 黎明, 等 基于图像光流的轴承滚子表面缺陷检测[J]. 仪器仪表学报, 2018, 39 (6): 198- 206 CHEN Hao, ZHANG Ben, LI Ming, et al Surface defect detection of bearing roller based on image optical flow[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 198- 206
doi: 10.19650/j.cnki.cjsi.J1803226
|
9 |
CHAN F W Y Reflective fringe pattern technique for subsurface crack defection[J]. NDT and E International, 2008, 41 (8): 602- 610
doi: 10.1016/j.ndteint.2008.06.003
|
10 |
段志达. 基于机器视觉的轴承缺陷检测[D]. 安徽: 安徽工程大学, 2020: 23. DUAN Zhi-da. Bearing defect detection based on machine vision [D]. Anhui: Anhui Polytechnic University, 2020: 23.
|
11 |
尚鲁强. 基于机器视觉的复杂曲面工件表面缺陷检测技术与系统[D]. 江西: 华东交通大学, 2020: 31. SHAGN Lu-qiang. Technology and system for detecting surface defects of complex curved workpieces based on machine vision [D]. Jiangxi: East China Jiaotong University, 2020: 31.
|
12 |
苏俊宏, 刘胜利 圆柱型高精密零件表面缺陷检测及形貌分析[J]. 激光与光电子学进展, 2014, 51 (4): 150- 154 SU Jun-hong, LIU Sheng-li Measure system of surface flaw and morphology analysis of cylindrical high precision parts[J]. Laser and Optoelectronics Progress, 2014, 51 (4): 150- 154
|
13 |
文生平, 周正军, 张啸言, 等 基于计算机视觉的轴承滚子表面缺陷在线检测系统[J]. 华南理工大学学报:自然科学版, 2020, 48 (10): 76- 87 WEN Sheng-ping, ZHOU Zheng-jun, ZHANG Xiao-yan, et al On-line detection system for surface defects of bearing rollers based on computer vision[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48 (10): 76- 87
|
14 |
PRAPPACHER N, BULLMANN M, BOHN G, et al Defect detection on rolling element surface scans using neural image segmentation[J]. Applied Sciences, 2020, 10 (9): 3290
doi: 10.3390/app10093290
|
15 |
XU X , ZHENG H, GUO Z, et al. SDD-CNN: small data-driven convolution neural networks for subtle roller defect inspection[J]. Applied Sciences, 2019, 9 (7): 1364
doi: 10.3390/app9071364
|
16 |
LE X, MEI J, ZHANG H, et al A learning-based approach for surface defect detection using small image datasets[J]. Neurocomputing, 2020, (408): 112- 120
|
17 |
HU J, YAN P, SU Y, et al A method for classification of surface defect on metal workpieces based on twin attention mechanism generative adversarial network[J]. IEEE Sensors, 2021, 21 (12): 13430- 13441
doi: 10.1109/JSEN.2021.3066603
|
18 |
FANG H, SUN J, WANG R, et al. InstaBoost: boosting instance segmentation via probability map guided copy-pasting [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Korea: Seoul, 2019: 682-691.
|
19 |
VINCENT O R, FOLORUNSO O A. Descriptive algorithm for sobel image edge detection [C]// Proceedings of Informing Science and IT Education Conference (InSITE). USA: Macon, 2009, 40: 97-107.
|
20 |
BASU M Gaussian-based edge-detection methods-a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2002, 32 (3): 252- 260
doi: 10.1109/TSMCC.2002.804448
|
21 |
HARALICK R M, STERNBERG S R, ZHUANG X Image analysis using mathematical morphology[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, (4): 532- 550
|
22 |
SUZUKI S Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics and Image Processing, 1985, 30 (1): 32- 46
doi: 10.1016/0734-189X(85)90016-7
|
23 |
ZHENG Z , WANG P , LIU W , et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// AAAI Conference on Artificial Intelligence. USA: New York, 2020, 34(7): 12993-13000.
|
24 |
XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA: Honolulu, 2017: 1492-1500.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|