土木工程、水利工程 |
|
|
|
|
考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型 |
王辉1( ),郇筱林1,陈宇琪1,周博1,*( ),薛世峰1,林英松2 |
1. 中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580 2. 中国石油大学(华东) 石油工程学院,山东 青岛 266580 |
|
Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition |
Hui WANG1( ),Xiao-lin HUAN1,Yu-qi CHEN1,Bo ZHOU1,*( ),Shi-feng XUE1,Ying-song LIN2 |
1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China 2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China |
引用本文:
王辉, 郇筱林, 陈宇琪, 周博, 薛世峰, 林英松. 考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型[J]. 浙江大学学报(工学版), 2021, 55(9): 1734-1743.
Hui WANG, Xiao-lin HUAN, Yu-qi CHEN, Bo ZHOU, Shi-feng XUE, Ying-song LIN. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1734-1743.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.015
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1734
|
1 |
PRIEST J A, BEST A I, CLAYTON C R I A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B04102
|
2 |
WAITE W F, SANTAMARINA J C, CORTES D D, et al Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47 (4): 465- 484
|
3 |
NING F, YU Y, KJELSTRUP S, et al Mechanical properties of clathrate hydrates: status and perspectives[J]. Energy and Environmental Science, 2012, 5 (5): 6779- 6795
doi: 10.1039/c2ee03435b
|
4 |
SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils [C]// 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. London: Taylor and Francis Group, 2006: 2591-2642.
|
5 |
MORIDIS G, COLLETT T S, POOLADI DARVISH M, et al Challenges, uncertainties and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation and Engineering, 2011, 14 (1): 76- 112
doi: 10.2118/131792-PA
|
6 |
SEOL J, LEE H Natural gas hydrate as a potential energy resource: from occurrence to production[J]. Korean Journal of Chemical Engineering, 2013, 30 (4): 771- 786
doi: 10.1007/s11814-013-0033-8
|
7 |
NIXON M F, GROZIC J L Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44 (3): 314- 325
doi: 10.1139/t06-121
|
8 |
COLLETT T, BAHK J J, BAKER R, et al Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 319- 329
doi: 10.1021/je500604h
|
9 |
DANGAYACH S, SINGH D N, KUMAR P, et al Thermal instability of gas hydrate bearing sediments: some issues[J]. Marine and Petroleum Geology, 2015, 67: 653- 662
doi: 10.1016/j.marpetgeo.2015.05.034
|
10 |
LIJITH K P, MALAGAR B R C, SINGH D N A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019, 104: 270- 285
doi: 10.1016/j.marpetgeo.2019.03.024
|
11 |
SONG Y, ZHU Y, LIU W, et al The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 77- 86
doi: 10.1016/j.petrol.2016.05.009
|
12 |
LIU Z, WEI H, LI P, et al An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test[J]. Journal of Petroleum Science and Engineering, 2017, 149: 56- 64
doi: 10.1016/j.petrol.2016.09.040
|
13 |
HYODO M, LI Y, YONEDA J, et al Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118 (10): 5185- 5194
doi: 10.1002/2013JB010233
|
14 |
HYODO M, YONEDA J, YOSHIMOTO N, et al Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53 (2): 299- 314
doi: 10.1016/j.sandf.2013.02.010
|
15 |
蒋明镜, 朱方园 一个深海能源土的温度−水压−力学二维微观胶结模型[J]. 岩土工程学报, 2014, 36 (8): 1377- 1386 JIANG Ming-jing, ZHU Fang-yuan A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1377- 1386
doi: 10.11779/CJGE201408001
|
16 |
JIANG M, HE J, WANG J, et al DEM analysis of geomechanical properties of cemented methane hydrate–bearing soils at different temperatures and pressures[J]. International Journal of Geomechanics, 2015, 16 (3): 1- 25
|
17 |
吴二林, 魏厚振, 颜荣涛, 等 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 3045- 3050 WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al Constitutive model for gas hydrate-bearing sediments considering damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 3045- 3050
|
18 |
颜荣涛, 梁维云, 韦昌富, 等 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38 (1): 10- 18 YAN Rong-tao, LIANG Wei-yun, WEI Chang-fu, et al A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits[J]. Rock and Soil Mechanics, 2017, 38 (1): 10- 18
|
19 |
祝效华, 孙汉文, 赵金洲, 等 天然气水合物沉积物等效变弹性模量损伤本构模型[J]. 石油学报, 2019, 40 (9): 1085- 1094 ZHU Xiao-hua, SUN Han-wen, ZHAO Jinzhou, et al Damage constitutive model of equivalent variable elastic modulus for gas hydrate sediments[J]. Acta Petrolei Sinica, 2019, 40 (9): 1085- 1094
doi: 10.7623/syxb201909006
|
20 |
颜荣涛, 张炳晖, 杨德欢, 等 不同温−压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 12 (39): 4421- 4428 YAN Rong-tao, ZHANG Bing-hui, YANG De-huan, et al Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 12 (39): 4421- 4428
|
21 |
NG C W W, BAGHBANREZVAN S, KADLICEK T, et al A state-dependant constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70 (12): 1094- 1108
doi: 10.1680/jgeot.18.P.143
|
22 |
PINKERT S, GROZIC J L H failure mechanisms in cemented hydrate-bearing sands[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 376- 382
doi: 10.1021/je500638c
|
23 |
MAKOGON I F. Hydrates of hydrocarbons [M]. [S.L]: Pennwell Books, 1997.
|
24 |
CHRISTENSEN R M, LO K H Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27 (4): 315- 330
doi: 10.1016/0022-5096(79)90032-2
|
25 |
张研, 韩林. 细观力学基础[M]. 北京: 科学出版社, 2014: 99-102.
|
26 |
邓方茜, 徐礼华, 池寅, 等 基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J]. 硅酸盐学报, 2019, 47 (2): 161- 170 DENG Fang-qian, XU Li-hua, CHI Yan, et al Calculation of effective elastic modulus for hybrid fiber reinforced concrete based on homogenization theory[J]. Journal of the Chinese Ceramic Society, 2019, 47 (2): 161- 170
|
27 |
CHANG D, LAI Y, ZHANG M A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, (59): 246- 259
|
28 |
王尚旭 含气地层弹性性质及其波场响应[J]. 石油与天然气地质, 2005, (6): 730- 735 WANG Shang-xu Elastic properties of gas-bearing strata and seismic response[J]. Oil and Gas Geology, 2005, (6): 730- 735
doi: 10.3321/j.issn:0253-9985.2005.06.005
|
29 |
CHAOUACHI M, FALENTY A, SELL K, et al Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry Geophysics Geosystems, 2015, 16: 1711- 1722
doi: 10.1002/2015GC005811
|
30 |
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Triaxial compressive strength of methane hydrate [C]// The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu: [s. n.], 2002.
|
31 |
SONG Y, YU F, LI Y, et al Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19 (3): 246- 250
doi: 10.1016/S1003-9953(09)60073-6
|
32 |
NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice [C]// Fifth ISOPE Ocean Mining Symposium. Tsukuba: [s. n.], 2003: 156-159.
|
33 |
NABESHIMA Y, TAKAI Y, KOMAI T. Compressive strength and density of methane hydrate [C]// Sixth ISOPE Ocean Mining Symposium. Changsha: [s. n.], 2005.
|
34 |
HYODO M, NAKATA Y, YOSHIMOTO N, et al Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45 (1): 75- 85
|
35 |
MIYAZAKI K, TENMA N, AOKI K, et al A nonlinear elastic model for triaxial compressive properties of artificial methane hydrate-bearing sediment samples[J]. Energies, 2012, 5 (10): 4057- 4075
doi: 10.3390/en5104057
|
36 |
颜荣涛, 韦昌富, 傅鑫晖, 等 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, (Suppl.2): 4115- 4122 YAN Rong-tao, WEI Chang-fu, FU Xin-hui, et al Influence of occurrence mode of hydrate on mechanical behavior of hydrate-bearing soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, (Suppl.2): 4115- 4122
|
37 |
MIYAZAKI K, MASUI A, SAKAMOTO Y, et al Triaxial compressive properties of artificial methane hydrate-bearing sediment[J]. Journal of Geophysical Research Atmospheres, 2011, 116: 1- 11
|
38 |
YONEDA J, JIN Y, KATAGIRI J, et al Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical Research Letters, 2016, 43 (14): 7442- 7450
doi: 10.1002/2016GL069951
|
39 |
WU P, LI Y, LIU W, et al Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research Solid Earth, 2020, 125 (1): 1- 19
|
40 |
JIANG M, CHEN H, TAPIAS M, et al Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J]. Computers and Geotechnics, 2014, 57: 122- 138
doi: 10.1016/j.compgeo.2014.01.012
|
41 |
JIANG M, HE J, WANG J, et al Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness[J]. Comptes Rendus Mécanique, 2017, 345 (12): 868- 889
|
42 |
沈珠江 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15 (3): 21- 28 SHEN Zhu-jiang An elasto-plastic damage model for cemented clay[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (3): 21- 28
doi: 10.3321/j.issn:1000-4548.1993.03.003
|
43 |
LEMAITRE J A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107 (1): 83- 89
doi: 10.1115/1.3225775
|
44 |
JIANG M, LIU J, SHEN Z DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths[J]. Engineering Geology, 2019, 261: 1- 13
|
45 |
YU Y, CHENG Y P, XU X, et al Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and Geotechnics, 2016, 80 (12): 397- 409
|
46 |
周博, 王宏乾, 王辉, 等 可燃冰沉积物宏细观力学特性真三轴试验离散元模拟[J]. 中国石油大学学报:自然科学版, 2020, 44 (1): 131- 140 ZHOU Bo, WANG Hong-qian, WANG Hui, et al Discrete element simulation of true triaxial tests on macro and meso mechanical properties of combustible ice sediments[J]. Journal of China University of Petroleum: Natural Science, 2020, 44 (1): 131- 140
|
47 |
蒋明镜, 刘俊, 申志福 裹覆型能源土力学特性真三轴试验离散元数值分析[J]. 中国科学: 物理学 力学 天文学, 2019, 49 (3): 1- 12 JIANG Ming-jing, LIU Jun, SHEN Zhi-fu Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method[J]. SCIENTIA SINICA Physica Mechanica and Astronomica, 2019, 49 (3): 1- 12
|
48 |
田振元, 王伟, 朱其志, 等 基于Lade-Duncan强度准则的统计损伤本构模型及其修正研究[J]. 科学技术与工程, 2014, 14 (35): 104- 109 TIAN Zhen-yuan, WANG Wei, ZHU Qi-zhi, et al A statistical damage constitutive model and its modifying method based on Lade-Duncan failure criterion[J]. Science Technology and Engineering, 2014, 14 (35): 104- 109
doi: 10.3969/j.issn.1671-1815.2014.35.019
|
49 |
LAI Y, LI S, QI J, et al Strength distributions of warm frozen clay and its stochastic damage constitutive model[J]. Cold Regions Science and Technology, 2008, 53 (2): 200- 215
doi: 10.1016/j.coldregions.2007.11.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|