Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1744-1751    DOI: 10.3785/j.issn.1008-973X.2021.09.016
土木工程、水利工程     
重力式基础陆上风机结构长期动力特性试验研究
朱则昊1(),仝福生2,国振1,*(),王立忠1,张佳利2,陈江波2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 山西省工业设备安装集团有限公司,山西 太原 030032
Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine
Ze-hao ZHU1(),Fu-sheng TONG2,Zhen GUO1,*(),Li-zhong WANG1,Jia-li ZHANG2,Jiang-bo CHEN2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Shanxi Industrial Equipment Installation Group Limited Company, Taiyuan 030032, China
 全文: PDF(1198 KB)   HTML
摘要:

为了揭示陆上风机服役期间动力特性发展规律,针对现有重力式基础支撑的陆上风机结构开展1∶50缩尺模型试验,结合相似性理论获得风机结构在服役状态下的整机频率和阻尼演变规律. 建立顶部集中质量—塔架—基础的简化模型,基于相似性理论和循环加载装置开展7组相关试验. 试验结果表明:陆上风机结构自振频率比在运行期间呈增长的趋势,且增长速率随着循环加载次数增加逐渐减小,结构阻尼比则呈逐渐减小的发展趋势;在循环加载过程中,基底土体应变水平和荷载频率对结构动力稳定性的影响较大.

关键词: 陆上风机重力式基础模型试验相似性理论动力特性发展规律    
Abstract:

In order to study the long-term dynamic characteristic of onshore wind turbines, a 1:50 scale model test for the existing onshore wind turbine structure supported by gravity foundation was carried out, and combined the similitude relationships the natural frequency and the damping’ evolution of the wind turbine structure in service were obtained. A simplified model of top mass-tower-foundation was established, and 7 groups of tests were carried out based on the similitude relationships and the cyclic loading device. Test results show that the natural frequency ratio of the onshore wind turbine structure shows an increasing trend during operation, and the growth rate gradually decreases with the increase of the number of cyclic loading, while the structural damping ratio shows a gradually decreasing development trend. During the cyclic loading process, the strain level of the soil under the foundation and the load frequency have a great impact on the dynamic stability of the structure.

Key words: onshore wind turbine    gravity foundation    model test    similitude relationships    evolution of dynamic characteristic
收稿日期: 2020-10-10 出版日期: 2021-10-20
CLC:  TU 311.3  
基金资助: 国家自然科学基金资助项目(51779220,51939010);浙江省自然科学基金资助项目(LHZ19E090003,LY15E090002);浙江省重点研发资助项目(2018C03031);装备预研教育部联合基金资助项目(6141A02022137)
通讯作者: 国振     E-mail: zhuzehaozzz@163.com;nehzoug@163.com
作者简介: 朱则昊(1996—),男,硕士生,从事风机基础研究. orcid.org/0000-0003-1579-6518. E-mail: zhuzehaozzz@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱则昊
仝福生
国振
王立忠
张佳利
陈江波

引用本文:

朱则昊,仝福生,国振,王立忠,张佳利,陈江波. 重力式基础陆上风机结构长期动力特性试验研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1744-1751.

Ze-hao ZHU,Fu-sheng TONG,Zhen GUO,Li-zhong WANG,Jia-li ZHANG,Jiang-bo CHEN. Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1744-1751.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.016        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1744

参数 符号 数值 单位
轮毅高度 L 90 m
叶轮直径 Db 140.36 m
叶轮转速 n 6~12 r/min
年平均风速 v 7.2 m/s
切入风速 vin 2.5 m/s
切出风速 vout 20 m/s
塔架上部直径 Dt 3.8 m
塔架下部直径 Db 4.6 m
基础埋深 HF 4 m
基础底部直径 D 19.6 m
上部结构质量 M1 233 t
塔架质量 M2 280 t
基础质量 M3 1350 t
荷载作用高度 LF 85 m
湍流系数 I 15 %
表 1  3.4 MW风机的相关参数
图 1  风机简化示意图
物理意义 无量纲化关系 比例大小
几何相似 L/D 1∶50
质量相似 M1M2M3 1∶1.2∶5.78
荷载作用高度相似 LF/D 1∶50
基底应变相似 H/GD2 --
荷载频率相似 fF/fn-in --
表 2  相似性理论无量纲化关系
图 2  模型结构及试验平台示意图
物理量 符号 数值 单位
比重 Gs 2.622
中值粒径 d50 0.16 mm
最大孔隙比 emax 0.943
最小孔隙比 emin 0.60
相对密实度 Dr 60 %
土体切变模量 G 12.2 MPa
表 3  试验土基本物理力学参数
图 3  循环加载装置工作原理示意图
工况 Fc/Fs Hdyn/GD2 fF/fn-in N
CLT-1 0.267 5.40×10?6 1.5 1 628 992
CLT-2 0.356 7.08×10?6 1.5 1 700 432
CLT-3 0.445 9.00×10?6 1.5 1 377 834
CLT-4 0.506 1.02×10?5 1.5 1 382 974
CLT-5 0.356 7.08×10?6 0.5 2 773 040
CLT-6 0.356 7.08×10?6 1.25 1 340 919
CLT-7 0.356 7.08×10?6 1.875 2 450 498
表 4  室内模型试验方案
图 4  荷载路径及荷载参数示意图
图 5  结构自振频率随循环加载次数变化关系图(CLT-1~CLT-4)
图 6  结构自振频率随循环加载次数变化关系图 (CLT-2,CLT-5~CLT-7)
图 7  结构阻尼比随循环加载次数变化关系图(CLT-1~CLT-4)
图 8  基础周围土体随循环次数变化过程
图 9  运行下基底土体受压示意图
图 10  循环荷载下基底土体压力时程曲线
图 11  基础转角随循环加载次数变化关系图(CLT-5)
1 周文杰, 王立忠, 汤旅军, 等 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报:工学版, 2019, 53 (8): 1431- 1437
ZHOU Wen-jie, WANG Li-zhong, TANG Lv-jun, et al Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1431- 1437
2 王仲颖, 赵勇强, 时璟丽 中国中长期风电发展路线图[J]. 中国能源, 2012, 34 (3): 5- 8
WANG Zhong-ying, ZHAO Yong-qiang, SHI Jing-li Roadmap of China wind power development in a long-term[J]. Energy of China, 2012, 34 (3): 5- 8
doi: 10.3969/j.issn.1003-2355.2012.03.001
3 迟洪明, 李向辉, 陈丙杰 我国陆上风电场风机基础形式分析[J]. 山西建筑, 2014, 40 (29): 88- 89
CHI Hong-ming, LI Xiang-hui, CHEN Bing-jie Research of wind turbine foundation types of onshore wind power station in China[J]. Shanxi Architecture, 2014, 40 (29): 88- 89
doi: 10.3969/j.issn.1009-6825.2014.29.045
4 水电水利规划设计总院. 风电机组地基基础设计规定(试行): FD003-2007[S]. 北京: 中国水利水电出版社, 2007: 9.
5 MOHAMED W, AUSTRELL P-E A comparative study of three onshore wind turbine foundation solutions[J]. Computers and Geotechnics, 2018, 94: 46- 57
doi: 10.1016/j.compgeo.2017.08.022
6 DET N V. Guidelines for design of wind turbines[M]. 2nd ed. Copenhagen: Jydsk Centraltrykkeri, 2002: 204-205.
7 ANDERSEN L A, VAHDATIRAD M J, SICHANI M T, et al Natural frequencies of wind turbines on monopile foundations in clayey soils: a probabilistic approach[J]. Computers and Geotechnics, 2012, 43: 1- 11
doi: 10.1016/j.compgeo.2012.01.010
8 BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al Static, seismic and stability analyses of a prototype wind turbine steel tower[J]. Engineering Structures, 2002, 24 (8): 1015- 1025
doi: 10.1016/S0141-0296(02)00021-4
9 BHATTACHARYA S, COX J, LOMBARDI D, et al Dynamics of offshore wind turbines supported on two foundation[J]. Geotechnical Engineering, 2013, 166 (2): 159- 169
10 HUANG Y P, GUO Z, HONG Y, et al. Investigations on dynamic reponses of offshore wind turbine supported by monopile in sand[C]// The 12th ISOPE Pacific/Asia Offshore Mechanics Symposium. Brisbane: ISOPE, 2016.
11 余璐庆. 海上风机桶形基础安装与支撑结构动力特性研究[D]. 杭州: 浙江大学, 2014: 98-123.
YU Lu-qing. Study on the installation behavior of suction caisson and the dynamic properties of offshore wind turbine structure[D].Hangzhou: Zhejiang University, 2014: 98-123.
12 MICHEL P, BUTENWEG C, KLINKEL S Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 299- 311
doi: 10.1016/j.soildyn.2018.03.009
13 柯世堂, 王同光, 曹九发, 等 考虑土−结构相互作用大型风力发电结构风致响应分析[J]. 土木工程学报, 2015, 48 (2): 18- 25
KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, et al Analysis on wind-induced responses of large wind power structures considering soil-structure interaction[J]. China Civil Engineering Journal, 2015, 48 (2): 18- 25
14 曹青, 张豪 考虑土−结构相互作用的风力发电机塔架地震响应分析[J]. 西北地震学报, 2011, 33 (1): 62- 66
CAO Qing, ZHANG Hao Seismic response analysis of wind turbine tower with soil-structure interaction[J]. Northwestern Seismological Journal, 2011, 33 (1): 62- 66
15 BHATTACHARYA S, NIKITAS N, GARNSEY J, et al Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations[J]. Soil Dynamics and Earthquake Engineering, 2013, 54: 47- 60
doi: 10.1016/j.soildyn.2013.07.012
16 LOMBARDI D, BHATTACHARYA S Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165- 180
doi: 10.1016/j.soildyn.2013.01.015
17 余璐庆, 王立忠 海上风机支撑结构动力特性模型试验研究[J]. 地震工程学报, 2014, 36 (4): 797- 803
YU Lu-qing, WANG Li-zhong Scaled model test study of the dynamic behavior of an offshore wind turbine support structure[J]. China Earthquake Engineering Journal, 2014, 36 (4): 797- 803
doi: 10.3969/j.issn.1000-0844.2014.04.0797
18 GUO Z, YU L Q, WANG L Z, et al Model tests on the long-term dynamic performance of offshore wind turbines founded on monopiles in sand[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137 (4): 041902
doi: 10.1115/1.4030682
19 OLIVEIRA G, MAGALHÃES F, CUNHA Á, et al Continuous dynamic monitoring of an onshore wind turbine[J]. Engineering Structures, 2018, 164: 22- 39
doi: 10.1016/j.engstruct.2018.02.030
20 ZHAO Y, PAN J, HUANG Z Y, et al Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions[J]. Engineering Structures, 2020, 205: 110071
doi: 10.1016/j.engstruct.2019.110071
21 BHATTACHARYA S Similitude relationship for physica modelling of monopile-supported offshore wind turbines[J]. International Journal of Physical Modelling in Geotechnics, 2011, 11 (2): 58- 68
doi: 10.1680/ijpmg.2011.11.2.58
22 NIKITAS G, VIMALAN N, BHATTACHARYA S An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154- 160
doi: 10.1016/j.soildyn.2015.12.008
23 黄玉佩. 大直径达桩基础海上风机支撑结构动力特性[D]. 杭州: 浙江大学, 2017: 33-36.
HUANG Yu-pei. Dynamic behavior of offshore wind turbine monopile structure[D]. Hangzhou: Zhejiang University, 2017: 33-36.
[1] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[2] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[3] 唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466.
[4] 牛纪强,梁习锋,周丹,刘堂红. 动车组过隧道时设备舱气动效应动模型试验[J]. 浙江大学学报(工学版), 2016, 50(7): 1258-1265.
[5] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[6] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49(3): 531-537.
[7] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2014, 48(10): 2-3.
[8] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[9] 张民锐, 邓华, 刘宏创, 董石麟, 张志宏, 陈玲秋. 月牙形索桁罩棚结构的静力性能模型试验[J]. J4, 2013, 47(2): 367-377.
[10] 王振华, 董石麟, 田伟, 袁行飞. 索穹顶与单层网壳组合结构的模型试验研究[J]. J4, 2010, 44(8): 1608-1614.
[11] 陈国兴, 左熹, 王志华, 杜修力, 孙田. 地铁车站结构近远场地震反应特性振动台试验[J]. J4, 2010, 44(10): 1955-1961.
[12] 孙红月, 吴红梅, 李焕强, 尚岳全. 松散堆积土中的隔水层对边坡稳定性的影响[J]. J4, 2010, 44(10): 2016-2020.
[13] 鲍侃袁 吴玉华 陈勇 孙炳楠. 新型楼盖体系的足尺模型试验及简化计算方法[J]. J4, 2008, 42(7): 1128-1134.
[14] 陈联盟 董石麟 袁行飞. Kiewitt型索穹顶结构模型试验研究[J]. J4, 2008, 42(2): 364-368.
[15] 朱斌 陈若曦 陈云敏 詹良通. 分层真空预压软土地基一维大变形固结模型及试验研究[J]. J4, 2007, 41(11): 1927-1931.