Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1734-1743    DOI: 10.3785/j.issn.1008-973X.2021.09.015
土木工程、水利工程     
考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型
王辉1(),郇筱林1,陈宇琪1,周博1,*(),薛世峰1,林英松2
1. 中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580
2. 中国石油大学(华东) 石油工程学院,山东 青岛 266580
Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition
Hui WANG1(),Xiao-lin HUAN1,Yu-qi CHEN1,Bo ZHOU1,*(),Shi-feng XUE1,Ying-song LIN2
1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China
 全文: PDF(1222 KB)   HTML
摘要:

为了反映温压环境对水合物沉积物力学特性的影响,定义新的温—压状态参数. 从温压环境对沉积物细观结构的作用机制出发,采用三相球模型提出考虑温—压环境对水合物沉积物细观各组分和各组分间接触界面影响的多尺度弹性参数预测模型. 基于传统Duncan-Chang模型与统计损伤理论,引入极限损伤值,建立Duncan-Chang统计损伤模型. 对比在不同温—压环境条件下水合物沉积物的三轴试验结果与模型预测结果,验证所提模型的有效性和合理性. 结果表明:该模型能够考虑水合物饱和度、温—压环境以及沉积物骨架的粒径级配影响,能够较好地模拟水合物沉积物在不同温压环境下应力—应变全过程.

关键词: 水合物沉积物温?压状态参数Duncan-Chang模型统计损伤极限损伤    
Abstract:

A new temperature-pressure state parameter was defined in order to reflect the influence of temperature-pressure environment on the mechanical properties of hydrate-bearing sediments. Based on the mechanism of temperature-pressure environment on the mesoscopic structure of the sediments, a multi-scale elastic parameter prediction model was proposed by using the three-phase sphere model considering the influence of temperature-pressure environment on the mesoscopic components and the contact interface of each component. Then, based on the traditional Duncan-Chang model and the statistical damage theory, a Duncan-Chang statistical damage model was established by introducing the ultimate damage value. The validity and reasonability of the proposed model were verified by comparing the triaxial tests data of hydrate-bearing sediments under different temperature and pore pressure conditions with the predicted results of the model. Results show that the model can take into account the effects of hydrate saturation, temperature and pore pressure environment, grain size grading of sediments skeleton. It can well simulate the stress-strain characteristics of hydrate-bearing sediments under different temperature and pore pressure environments.

Key words: hydrate-bearing sediments    temperature and pore pressure state parameter    Duncan-Chang constitutive model    statistical damage    ultimate damage
收稿日期: 2020-10-12 出版日期: 2021-10-20
CLC:  TE 133  
基金资助: 国家重点研发计划资助项目(2017YFC0307604)
通讯作者: 周博     E-mail: upc_wanghui@163.com;zhoubo@upc.edu.cn
作者简介: 王辉(1995—),男,硕士生,从事水合物沉积物的力学性质研究. orcid.org/0000-0001-5968-3473. E-mail: upc_wanghui@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王辉
郇筱林
陈宇琪
周博
薛世峰
林英松

引用本文:

王辉, 郇筱林, 陈宇琪, 周博, 薛世峰, 林英松. 考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型[J]. 浙江大学学报(工学版), 2021, 55(9): 1734-1743.

Hui WANG, Xiao-lin HUAN, Yu-qi CHEN, Bo ZHOU, Shi-feng XUE, Ying-song LIN. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1734-1743.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.015        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1734

图 1  水合物沉积物的细观接触示意
图 2  甲烷水合物相平衡曲线
图 3  水合物沉积物的均匀化程序示意图
图 4  孔隙中液态水的体积模量与环境温度和孔隙压力的关系
图 5  Toyoura砂土粒径级配曲线
图 6  甲烷水合物弹性模量与温−压状态参数的关系
ξ SMH/% φMH/% F0 m
0.971 0 0 0 18.183 0 1.949 1
0.971 0 26.6 11.69 21.359 4 3.731 3
0.971 0 46.6 18.85 28.047 9 5.422 5
表 1  不同饱和度的Weibull模型参数
σ3/MPa SMH/% φMH/% F0 m
1 34.8 0.147 6 10.894 4 4.574 4
2 34.8 0.147 6 16.695 5 3.809 9
3 34.8 0.147 6 22.361 9 2.908 9
表 2  不同有效围压的Weibull模型参数
ξ SMH/% φMH/% F0 m
0.957 0 23.2 10.35 27.297 1 4.393 3
0.965 6 23.2 10.35 22.533 3 4.091 9
0.971 0 24.7 10.95 18.896 6 3.726 8
0.971 0 46.6 18.85 29.168 8 4.591 3
0.991 3 42.5 17.45 23.110 3 3.427 5
表 3  不同温−压环境下的Weibull模型参数
图 7  不同条件下水合物沉积物的应力−应变曲线的试验结果与计算结果对比
1 PRIEST J A, BEST A I, CLAYTON C R I A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B04102
2 WAITE W F, SANTAMARINA J C, CORTES D D, et al Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47 (4): 465- 484
3 NING F, YU Y, KJELSTRUP S, et al Mechanical properties of clathrate hydrates: status and perspectives[J]. Energy and Environmental Science, 2012, 5 (5): 6779- 6795
doi: 10.1039/c2ee03435b
4 SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils [C]// 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. London: Taylor and Francis Group, 2006: 2591-2642.
5 MORIDIS G, COLLETT T S, POOLADI DARVISH M, et al Challenges, uncertainties and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation and Engineering, 2011, 14 (1): 76- 112
doi: 10.2118/131792-PA
6 SEOL J, LEE H Natural gas hydrate as a potential energy resource: from occurrence to production[J]. Korean Journal of Chemical Engineering, 2013, 30 (4): 771- 786
doi: 10.1007/s11814-013-0033-8
7 NIXON M F, GROZIC J L Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44 (3): 314- 325
doi: 10.1139/t06-121
8 COLLETT T, BAHK J J, BAKER R, et al Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 319- 329
doi: 10.1021/je500604h
9 DANGAYACH S, SINGH D N, KUMAR P, et al Thermal instability of gas hydrate bearing sediments: some issues[J]. Marine and Petroleum Geology, 2015, 67: 653- 662
doi: 10.1016/j.marpetgeo.2015.05.034
10 LIJITH K P, MALAGAR B R C, SINGH D N A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019, 104: 270- 285
doi: 10.1016/j.marpetgeo.2019.03.024
11 SONG Y, ZHU Y, LIU W, et al The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 77- 86
doi: 10.1016/j.petrol.2016.05.009
12 LIU Z, WEI H, LI P, et al An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test[J]. Journal of Petroleum Science and Engineering, 2017, 149: 56- 64
doi: 10.1016/j.petrol.2016.09.040
13 HYODO M, LI Y, YONEDA J, et al Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118 (10): 5185- 5194
doi: 10.1002/2013JB010233
14 HYODO M, YONEDA J, YOSHIMOTO N, et al Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53 (2): 299- 314
doi: 10.1016/j.sandf.2013.02.010
15 蒋明镜, 朱方园 一个深海能源土的温度−水压−力学二维微观胶结模型[J]. 岩土工程学报, 2014, 36 (8): 1377- 1386
JIANG Ming-jing, ZHU Fang-yuan A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1377- 1386
doi: 10.11779/CJGE201408001
16 JIANG M, HE J, WANG J, et al DEM analysis of geomechanical properties of cemented methane hydrate–bearing soils at different temperatures and pressures[J]. International Journal of Geomechanics, 2015, 16 (3): 1- 25
17 吴二林, 魏厚振, 颜荣涛, 等 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 3045- 3050
WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al Constitutive model for gas hydrate-bearing sediments considering damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 3045- 3050
18 颜荣涛, 梁维云, 韦昌富, 等 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38 (1): 10- 18
YAN Rong-tao, LIANG Wei-yun, WEI Chang-fu, et al A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits[J]. Rock and Soil Mechanics, 2017, 38 (1): 10- 18
19 祝效华, 孙汉文, 赵金洲, 等 天然气水合物沉积物等效变弹性模量损伤本构模型[J]. 石油学报, 2019, 40 (9): 1085- 1094
ZHU Xiao-hua, SUN Han-wen, ZHAO Jinzhou, et al Damage constitutive model of equivalent variable elastic modulus for gas hydrate sediments[J]. Acta Petrolei Sinica, 2019, 40 (9): 1085- 1094
doi: 10.7623/syxb201909006
20 颜荣涛, 张炳晖, 杨德欢, 等 不同温−压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 12 (39): 4421- 4428
YAN Rong-tao, ZHANG Bing-hui, YANG De-huan, et al Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 12 (39): 4421- 4428
21 NG C W W, BAGHBANREZVAN S, KADLICEK T, et al A state-dependant constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70 (12): 1094- 1108
doi: 10.1680/jgeot.18.P.143
22 PINKERT S, GROZIC J L H failure mechanisms in cemented hydrate-bearing sands[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 376- 382
doi: 10.1021/je500638c
23 MAKOGON I F. Hydrates of hydrocarbons [M]. [S.L]: Pennwell Books, 1997.
24 CHRISTENSEN R M, LO K H Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27 (4): 315- 330
doi: 10.1016/0022-5096(79)90032-2
25 张研, 韩林. 细观力学基础[M]. 北京: 科学出版社, 2014: 99-102.
26 邓方茜, 徐礼华, 池寅, 等 基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J]. 硅酸盐学报, 2019, 47 (2): 161- 170
DENG Fang-qian, XU Li-hua, CHI Yan, et al Calculation of effective elastic modulus for hybrid fiber reinforced concrete based on homogenization theory[J]. Journal of the Chinese Ceramic Society, 2019, 47 (2): 161- 170
27 CHANG D, LAI Y, ZHANG M A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, (59): 246- 259
28 王尚旭 含气地层弹性性质及其波场响应[J]. 石油与天然气地质, 2005, (6): 730- 735
WANG Shang-xu Elastic properties of gas-bearing strata and seismic response[J]. Oil and Gas Geology, 2005, (6): 730- 735
doi: 10.3321/j.issn:0253-9985.2005.06.005
29 CHAOUACHI M, FALENTY A, SELL K, et al Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry Geophysics Geosystems, 2015, 16: 1711- 1722
doi: 10.1002/2015GC005811
30 HYODO M, NAKATA Y, YOSHIMOTO N, et al. Triaxial compressive strength of methane hydrate [C]// The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu: [s. n.], 2002.
31 SONG Y, YU F, LI Y, et al Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19 (3): 246- 250
doi: 10.1016/S1003-9953(09)60073-6
32 NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice [C]// Fifth ISOPE Ocean Mining Symposium. Tsukuba: [s. n.], 2003: 156-159.
33 NABESHIMA Y, TAKAI Y, KOMAI T. Compressive strength and density of methane hydrate [C]// Sixth ISOPE Ocean Mining Symposium. Changsha: [s. n.], 2005.
34 HYODO M, NAKATA Y, YOSHIMOTO N, et al Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45 (1): 75- 85
35 MIYAZAKI K, TENMA N, AOKI K, et al A nonlinear elastic model for triaxial compressive properties of artificial methane hydrate-bearing sediment samples[J]. Energies, 2012, 5 (10): 4057- 4075
doi: 10.3390/en5104057
36 颜荣涛, 韦昌富, 傅鑫晖, 等 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, (Suppl.2): 4115- 4122
YAN Rong-tao, WEI Chang-fu, FU Xin-hui, et al Influence of occurrence mode of hydrate on mechanical behavior of hydrate-bearing soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, (Suppl.2): 4115- 4122
37 MIYAZAKI K, MASUI A, SAKAMOTO Y, et al Triaxial compressive properties of artificial methane hydrate-bearing sediment[J]. Journal of Geophysical Research Atmospheres, 2011, 116: 1- 11
38 YONEDA J, JIN Y, KATAGIRI J, et al Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical Research Letters, 2016, 43 (14): 7442- 7450
doi: 10.1002/2016GL069951
39 WU P, LI Y, LIU W, et al Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research Solid Earth, 2020, 125 (1): 1- 19
40 JIANG M, CHEN H, TAPIAS M, et al Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J]. Computers and Geotechnics, 2014, 57: 122- 138
doi: 10.1016/j.compgeo.2014.01.012
41 JIANG M, HE J, WANG J, et al Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness[J]. Comptes Rendus Mécanique, 2017, 345 (12): 868- 889
42 沈珠江 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15 (3): 21- 28
SHEN Zhu-jiang An elasto-plastic damage model for cemented clay[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (3): 21- 28
doi: 10.3321/j.issn:1000-4548.1993.03.003
43 LEMAITRE J A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107 (1): 83- 89
doi: 10.1115/1.3225775
44 JIANG M, LIU J, SHEN Z DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths[J]. Engineering Geology, 2019, 261: 1- 13
45 YU Y, CHENG Y P, XU X, et al Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and Geotechnics, 2016, 80 (12): 397- 409
46 周博, 王宏乾, 王辉, 等 可燃冰沉积物宏细观力学特性真三轴试验离散元模拟[J]. 中国石油大学学报:自然科学版, 2020, 44 (1): 131- 140
ZHOU Bo, WANG Hong-qian, WANG Hui, et al Discrete element simulation of true triaxial tests on macro and meso mechanical properties of combustible ice sediments[J]. Journal of China University of Petroleum: Natural Science, 2020, 44 (1): 131- 140
47 蒋明镜, 刘俊, 申志福 裹覆型能源土力学特性真三轴试验离散元数值分析[J]. 中国科学: 物理学 力学 天文学, 2019, 49 (3): 1- 12
JIANG Ming-jing, LIU Jun, SHEN Zhi-fu Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method[J]. SCIENTIA SINICA Physica Mechanica and Astronomica, 2019, 49 (3): 1- 12
48 田振元, 王伟, 朱其志, 等 基于Lade-Duncan强度准则的统计损伤本构模型及其修正研究[J]. 科学技术与工程, 2014, 14 (35): 104- 109
TIAN Zhen-yuan, WANG Wei, ZHU Qi-zhi, et al A statistical damage constitutive model and its modifying method based on Lade-Duncan failure criterion[J]. Science Technology and Engineering, 2014, 14 (35): 104- 109
doi: 10.3969/j.issn.1671-1815.2014.35.019
49 LAI Y, LI S, QI J, et al Strength distributions of warm frozen clay and its stochastic damage constitutive model[J]. Cold Regions Science and Technology, 2008, 53 (2): 200- 215
doi: 10.1016/j.coldregions.2007.11.001
[1] 赵增辉, 王渭明, 高鑫, 严纪兴. 弱胶结泥质软岩的三向压缩损伤特性[J]. 浙江大学学报(工学版), 2014, 48(8): 1399-1405.
[2] 徐日庆,张俊,朱剑锋, 王兴陈. 考虑扰动影响的修正Duncan-Chang模型[J]. J4, 2012, 46(1): 1-7.