Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1725-1733    DOI: 10.3785/j.issn.1008-973X.2021.09.014
土木工程、水利工程     
可替换式偏心支撑钢框架抗震性能
李通1(),王新武2,*(),时强2,3,布欣2,孙海粟2
1. 河南科技大学 土木工程学院,河南 洛阳 471023
2. 洛阳理工学院 河南新型土木工程结构国际联合实验室,河南 洛阳 471023
3. 武汉理工大学 理学院,湖北 武汉 430070
Seismic performance of replaceable eccentrically braced steel frame
Tong LI1(),Xin-wu WANG2,*(),Qiang SHI2,3,xin BU2,Hai-su SUN2
1. School of Civil Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Henan International Joint Laboratory of New Civil Engineering Structure, Luoyang Institute of Science and Technology, Luoyang 471023, China
3. School of Science, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(1616 KB)   HTML
摘要:

为了研究耗能梁段屈服类型、柱轴压和震后替换耗能梁段对可替换式偏心支撑钢框架抗震性能的影响,采用拟静力循环加载的方法对4个可替换式偏心支撑钢框架进行试验,并从滞回曲线、刚度退化、延性系数和构件应变等方面分析其抗震性能. 结果表明,耗能梁段屈服类型对可替换式偏心支撑钢框架抗震性能影响较大,随着耗能梁段从剪切型过渡到弯曲型,结构的承载能力、延性和耗能能力均呈下降趋势;随着柱轴压的增加,试件的初始刚度和延性系数逐渐降低;震后替换耗能梁段的模型与原模型相比,仅耗能能力有所下降,其余性能变化不大,说明这种结构具有良好的可替换性. 通过对应变分析发现,直至试验结束,耗能梁以外绝大部分区域仍处于弹性阶段,说明耗能梁段作为第一道抗震防线可以保护其他构件.

关键词: 偏心支撑钢框架可替换高强螺栓拟静力试验抗震性能    
Abstract:

In order to study the yield type of the link, the axial force of the column and the post-earthquake replacement link on seismic performance of replacement eccentrically braced steel frame, the pseudo-static cyclic loading tests of four replaceable eccentrically braced steel frames were carried out. The hysteretic curves, the stiffness degradation, the ductility coefficient and the strain of specimens were investigated to evaluate the seismic performance. Results show that the yield type of the link is one of the important factors affecting the seismic performance of the replaceable eccentrically braced steel frame, the bearing capacity, the ductility and the energy dissipation capacity of the specimens with shear type is higher than that of bending type. The initial stiffness and the ductility coefficient of the structure decrease with the increase of the axial force of the column. Compared with the original model, only the energy dissipation capacity of the model of replacing the link after the earthquake is decreased, while the other performance did not change much which indicates that the structure has good replaceability. Through the corresponding strain analysis, it is found that until the end of the test, most areas are still in the elastic status except the link, which indicates that the link as the first seismic defense line can protect other members.

Key words: eccentrically braced steel frame    replaceable    high strength bolt    pseudo-static test    seismic performance
收稿日期: 2020-06-28 出版日期: 2021-10-20
CLC:  TU 391  
基金资助: 国家自然科学基金资助项目(51678284);中原科技创新领军人才项目(214200510002);河南省高校科技创新团队项目(21IRTSTHN010);河南省科技厅科技攻关项目(212102310969);河南省高等学校重点科研项目(21B560010);河南省高校青年骨干教师培养计划(2020GGJS244)
通讯作者: 王新武     E-mail: ligen2209@163.com;lywxw518@163.com
作者简介: 李通(1994—),男,硕士生,从事装配式钢结构的研究. orcid.org/0000-0002-7865-2653. E-mail: ligen2209@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李通
王新武
时强
布欣
孙海粟

引用本文:

李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.

Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.014        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1725

构件 截面尺寸/mm 材料
H250×125×6×9 Q345B
H200×200×8×12 Q345B
支撑 H125×125×6.5×9 Q345B
耗能梁 H250×125×6×9 Q235B
表 1  构件截面尺寸和材料
图 1  试件尺寸图
图 2  耗能梁段细节
钢材 t/mm E/GPa Fy/MPa ${\varepsilon }_{{\rm{y}}}$/% Fu/Mpa $\;\rho$/%
Q235 6.0 236 271 0.163 447 35
Q235 9.0 241 261 0.167 427 30
Q345 6.0 201 269 0.181 536 32
Q345 6.5 220 334 0.165 461 28
Q345 8.0 224 379 0.213 543 30
Q345 9.0 227 356 0.182 530 29
Q345 12.0 224 337 0.179 526 34
表 2  试件材料性能
图 3  试验现场布置
图 4  试件测点布置
图 5  水平循环加载制度
编号 l/mm N/kN 替换 $e$ h/mm tw/mm tf/mm Z/cm3 Fy/MPa Vp /kN Mp/(kN·m)
REBF-1 400 200 1.08 250 6 9 309 271 226.3 83.7
REBF-2 600 200 1.62 250 6 9 309 271 226.3 83.7
REBF-3 400 400 1.08 250 6 9 309 271 226.3 83.7
REBF-4 400 400 1.08 250 6 9 309 271 226.3 83.7
表 3  试件主要参数
模型 失效模式 破坏形式
REBF-1 耗能梁腹板撕裂,翼缘弯曲. 剪切屈服
REBF-2 耗能梁翼缘焊缝断裂. 弯曲屈服
REBF-3 耗能梁与端板焊缝热影响区
钢材断裂,翼缘弯曲.
剪切屈服
REBF-4 耗能梁与端板焊缝热影响区
钢材断裂,翼缘弯曲.
剪切屈服
表 4  模型失效模式
编号 屈服点 极限点 破坏点
y/mm Py /kN m/mm Pm/kN u/mm Pu/kN
REBF-1 3.86 262.3 30.66 710 35.01 695.65
REBF-2 2.85 202.11 27.72 488.01 27.72 488.01
REBF-3 3.33 230.62 30.68 690.75 33.39 659.75
REBF-4 2.67 142.86 30.51 677.7 30.51 677.7
表 5  试件抗震性能试验结果
图 6  试件的滞回曲线
图 7  试件的骨架曲线
图 8  K型偏心支撑耗能梁转角机理
试件 ${\gamma }_{{\rm{y}}}$/rad ${\gamma }_{{\rm{u}}}$/rad ${V}_{ {\rm{y} } }$/kN ${V}_{{\rm{u}}}$/kN
REBF-1 0.014 5 0.147 163.0 409.5
REBF-2 0.010 3 0.080 159.4 385.4
REBF-3 0.013 6 0.137 138.0 401.3
REBF-4 0.009 2 0.124 86.8 386.4
表 6  试件耗能梁转角与剪力测试结果
图 9  试件的刚度退化曲线
图 10  等效弹性刚度法
编号 $\varDelta _{ {\rm{y} } }$/mm $\varDelta _{ {\rm{u} } }$/mm $\; \mu$
REBF-1 9.40 35.30 3.76
REBF-2 9.02 28.88 3.20
REBF-3 11.72 32.93 2.81
REBF-4 10.93 29.76 2.72
表 7  试件的延性系数
编号 J E C
REBF-1 31.39 1.33 0.21
REBF-2 17.79 1.15 0.18
REBF-3 27.98 1.28 0.20
REBF-4 20.31 1.02 0.16
表 8  试件的耗能能力
图 11  REBF-3主要测点的应变曲线
图 12  带应变片的螺栓实物图
图 13  螺栓位置及编号
图 14  试件螺栓的应变曲线
图 15  螺栓孔呈椭圆形
1 KAZEMZADEH AZAD S, TOPKAYA C A review of research on steel eccentrically braced frames[J]. Journal of Constructional Steel Research, 2017, 128: 53- 73
doi: 10.1016/j.jcsr.2016.07.032
2 张磊, 罗桂发, 童根树 人字撑−钢框架弹塑性抗侧性能的精细化研究[J]. 浙江大学学报: 工学版, 2013, 47 (10): 1815- 1823
ZHANG Lei, LUO Gui-fa, TONG Gen-shu Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (10): 1815- 1823
3 LEILA H N, MOHSEN T Equation for achieving efficient length of link-beams in eccentrically braced frames and its reliability validation[J]. Journal of Constructional Steel Research, 2017, 130: 53- 64
doi: 10.1016/j.jcsr.2016.11.020
4 POPOV E P, ENGELHARDT M D Seismic eccentrically braced frames[J]. Journal of Constructional Steel Research, 1998, (10): 321- 354
5 POPOV E P Recent research on eccentrically braced frames[J]. Engineering Structures, 1983, 5 (1): 3- 9
doi: 10.1016/0141-0296(83)90034-2
6 MALLEY J O, POPOV E P Shear links in eccentrically braced frames[J]. Engineering Structures, 1984, 110 (9): 111- 123
7 KASAI K, POPOV E P General behavior of WF steel smear link beams[J]. Engineering Structures, 1986, 112 (2): 362- 382
doi: 10.1061/(ASCE)0733-9445(1986)112:2(362)
8 KASAI K, POPOV E P Cyclic web buckling control for shear link beams[J]. Engineering Structures, 1986, 112 (3): 505- 523
doi: 10.1061/(ASCE)0733-9445(1986)112:3(505)
9 时强, 王新武, 晏石林, 等 平齐端板连接偏心支撑钢框架抗震试验研究[J]. 华中科技大学学报: 自然科学版, 2020, 48 (6): 107- 112
SHI Qiang, WANG Xin-wu, YAN Shi-lin, et al Experimental study on seismic behavior of eccentrically braced steel frame with flush end plant connection[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (6): 107- 112
10 LIAN M, SU M Z, et al Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link[J]. Journal of Constructional Steel Research, 2017, 137 (6): 262- 285
11 LIAN M, SU M Z, ZHANG H, et al Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links[J]. Steel and Composite Structures, 2019, 30 (4): 365- 382
12 LIAN M, SU M Z Seismic testing and numerical analysis of Y-shaped eccentrically braced frame made of high-strength steel[J]. Structural Design of Tall and Special Buildings, 2018, (5): e1455
13 LIAN M, SU M Z Experimental study and simplified analysis of EBF fabricated with high strength steel[J]. Journal of Constructional Steel Research, 2017, 139: 6- 17
doi: 10.1016/j.jcsr.2017.09.013
14 李慎, 苏明周, 连鸣, 等 多层高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 土木工程学报, 2015, 48 (10): 38- 47
LI Shen, SU Ming-zhou, LIAN Ming, et al Seismic behavior of multi-storey high strength steel composite K-eccentrically braced steel frame[J]. China Civil Engineering Journal, 2015, 48 (10): 38- 47
15 殷占忠, 李锦铭, 董龙光, 等 偏心支撑钢框架可替换剪切连接件试验研究[J]. 建筑结构学报, 2019, 40 (9): 157- 165
YIN Zhan-zhong, LI Jing-ming, DONG Long-guang, et al Experimental study of replaceable shear links for eccentrically braced steel frames[J]. Journal of Building Structures, 2019, 40 (9): 157- 165
16 中华人民共和国原冶金工业部. 钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975—2018[S]. 北京: 中国标准出版社, 2018.
17 中国钢铁工业协会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.
18 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JCJ/T 101—2015[S]北京: 中国建筑工业出版社, 2015.
[1] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[2] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[3] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[4] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[5] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[6] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[7] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[8] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[9] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[10] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[11] 李玉荣 沈金 裘涛 孙炳楠 秦从律. 型钢混凝土梁式转换节点抗震性能研究[J]. J4, 2006, 40(1): 96-102.
[12] 秦从律 张爱晖. 基于截面纤维模型的弹塑性时程分析方法[J]. J4, 2005, 39(7): 1003-1008.