Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 717-729    DOI: 10.3785/j.issn.1008-973X.2025.04.007
土木与建筑工程     
热效应作用下P波入射成层弹性地基场地的地震响应
杨奕琪1(),马强1,2,*()
1. 青海大学 土木水利学院,青海 西宁 810016
2. 青海省建筑节能材料与工程安全重点实验室,青海 西宁 810016
Seismic response of P-wave incident layered elastic foundation site under thermal effect
Yiqi YANG1(),Qiang MA1,2,*()
1. School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China
2. Key Laboratory of Energy-Saving Building Materials and Engineering Safety, Qinghai Province, Xining 810016, China
 全文: PDF(1606 KB)   HTML
摘要:

基于热弹性介质中弹性波的传播理论,建立平面P波入射下的成层弹性地基场地模型. 根据亥姆霍兹矢量分解原理,在基岩-成层弹性地基层系统中采用传递矩阵法,推导得到成层弹性地基层中波幅系数转换矩阵,获得热效应作用下平面P波入射成层弹性地基场地地震响应的解析解答. 通过数值计算,分析热传导系数、介质温度、固相比热容等热物性参数对成层弹性地基场地地震地面运动的影响规律. 结果表明:当入射角为0~90°时,热效应下的水平位移放大系数相对于等温条件下的减小了40.53%,竖向位移放大系数相对于等温条件下的增加了8.28%,成层弹性地基的水平和竖向位移放大系数峰值分别比均质弹性地基的增加了33.17%和38.12%. 随着介质温度的增大,水平位移放大系数逐渐减小,竖向位移放大系数逐渐增大;随着频率的增大,地表水平和竖向位移放大系数逐渐增大. 软硬土层在土层中的排列次序、固相比热容和热膨胀系数对地表位移放大系数的影响均不可忽视.

关键词: 地震响应平面P波热效应成层弹性地基传递矩阵法    
Abstract:

A model of a layered elastic foundation site under plane P-wave incidence was established based on the propagation theory of elastic waves in the thermoelastic medium. According to the Helmholtz vector decomposition principle, the transfer matrix method was used in the bedrock-layered elastic foundation system to derive the conversion matrix of wave amplitude coefficients in the layered elastic foundation site, and an analytical solution for the seismic response of plane P-wave incident the layered elastic foundation site under the action of thermal effect was obtained. The influence of thermal physical parameters such as heat conduction coefficient, medium temperature, and solid specific heat capacity on seismic ground motion of layered elastic foundation site was analyzed by numerical calculation. Results show that when the incident angle is 0 to 90°, the horizontal displacement magnification factor under thermal effect decreases by 40.53% compared with the isothermal condition, and the vertical displacement magnification factor increases by 8.28% compared with the isothermal condition. The peaks of horizontal and vertical displacement magnification factors of layered elastic foundations increase by 33.17% and 38.12%, respectively, compared to those for homogeneous elastic foundations. With a rise in the medium temperature, the horizontal displacement magnification factor decreases gradually, and the vertical displacement magnification factor increases gradually. The horizontal and vertical displacement magnification factor increases gradually with an increase in the frequency. The order of soft and hard soil layers in the soil layer, the solid specific heat capacity, and the coefficient of thermal expansion have a non-negligible effect on the amplification factor of the surface displacement.

Key words: seismic response    plane P-wave    thermal effect    layered elastic foundation    transfer matrix method
收稿日期: 2024-01-31 出版日期: 2025-04-25
CLC:  TU 435  
基金资助: 国家自然科学基金资助项目(52168053);青海省自然科学基金资助项目(2024-ZJ-922).
通讯作者: 马强     E-mail: zsfzyyq949892014@163.com;maqiang0104@163.com
作者简介: 杨奕琪(1999―),男,硕士生,从事土动力学与岩土工程抗震研究. orcid.org/0009-0006-5691-1024. E-mail:zsfzyyq949892014@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨奕琪
马强

引用本文:

杨奕琪,马强. 热效应作用下P波入射成层弹性地基场地的地震响应[J]. 浙江大学学报(工学版), 2025, 59(4): 717-729.

Yiqi YANG,Qiang MA. Seismic response of P-wave incident layered elastic foundation site under thermal effect. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 717-729.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.007        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/717

图 1  成层弹性地基场地简化模型
参数数值
基岩层层I层II
tq/s2.0×10?72.0×10?72.0×10?7
ρ/(kg·m?32 7002 7002 700
cs/(J·kg?1·K?11 0461 0461 046
T/K293.2293.2293.2
λ/GPa12.09.09.0
μ/GPa8.04.04.0
tθ/s1.5×10?71.5×10?71.5×10?7
α/K?14.0×10?44.0×10?44.0×10?4
K/(J·s?1·m?1·K?13.03.03.0
土层厚度h/m1010
ω/Hz555
表 1  成层弹性地基中验证数值解的参数 [32]
图 2  热效应均质弹性地基下的位移放大系数
参数数值
基岩层层I层II
tq/s2.0×10?72.0×10?72.0×10?7
ρ/(kg·m?32 7002 7002 650
cs/(J·kg?1·K?11 0461 0461 046
T/K293.2293.2293.2
λ/GPa12.09.08.0
μ/GPa8.04.08.0
tθ/s1.5×10?71.5×10?71.5×10?7
α/K?13.0×10?43.0×10?43.0×10?4
K/(J·s?1·m?1·K?13.03.03.0
表 2  成层弹性地基的计算参数[15,32]
图 3  不同弹性地基的位移放大系数对比
图 4  不同热传导系数下的位移放大系数
图 5  不同温度下的位移放大系数
图 6  位移放大系数随固相比热容和热膨胀系数变化的三维等高线图
图 7  位移放大系数随热通量和温度梯度相位延迟时间变化的三维等高线图
图 8  不同入射频率下的位移放大系数(2种理论模型)
图 9  不同典型成层弹性地基中的位移放大系数
1 周凤玺, 张家齐, 曹小林 梯度饱和多孔材料中弹性波的截止频率[J]. 浙江大学学报: 工学版, 2016, 50 (4): 744- 749
ZHOU Fengxi, ZHANG Jiaqi, CAO Xiaolin Analysis of cut-off frequencies for functionally graded fluid-saturated materials[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 744- 749
2 周凤玺, 梁玉旺 多空沟对弹性波的散射及隔振性能分析: 平面P-SV波入射[J]. 振动工程学报, 2023, 36 (3): 789- 795
ZHOU Fengxi, LIANG Yuwang Analysis of elastic wave scattering and vibration isolation performance of multiple open trenches: plane P-SV wave incident[J]. Journal of Vibration Engineering, 2023, 36 (3): 789- 795
3 丘磊, 田钢, 石战结, 等 起伏地表条件下有限差分地震波数值模拟——基于广义正交曲线坐标系[J]. 浙江大学学报: 工学版, 2012, 46 (10): 1923- 1931
QIU Lei, TIAN Gang, SHI Zhanjie, et al Finite-difference method for seismic wave numerical simulation in presence of topography: in generalized orthogonal curvilinear coordinate system[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (10): 1923- 1931
4 刘中宪, 武凤娇, 王冬 沉积盆地-山体耦合场地对平面P波、SV波和Rayleigh波的二维散射分析[J]. 工程力学, 2016, 33 (2): 160- 171
LIU Zhongxian, WU Fengjiao, WANG Dong Two dimensional scattering analysis of planar P, SV, and Rayleigh waves by coupled alluvial basin-mountain terrain[J]. Engineering Mechanics, 2016, 33 (2): 160- 171
doi: 10.6052/j.issn.1000-4750.2014.05.0396
5 LIU Z, WANG Z, CHENG A H D, et al The method of fundamental solutions for the elastic wave scattering in a double-porosity dual-permeability medium[J]. Applied Mathematical Modelling, 2021, 97: 721- 740
doi: 10.1016/j.apm.2021.04.021
6 BA Z, SANG Q, LIANG J Seismic analysis of a lined tunnel in a multi-layered TI saturated half-space due to qP1-and qSV-waves[J]. Tunnelling and Underground Space Technology, 2022, 119: 104248
doi: 10.1016/j.tust.2021.104248
7 DUHAMEL J M C. Second memorandum on thermodynamic phenomena [J]. Journal of the Ecole Polytechnique, 1937, 15(25): 1–57.
DUHAMEL J M C. Second memorandum on thermodynamic phenomena [J]. Journal of the Ecole Polytechnique , 1937, 15(25): 1–57.
8 NEUMANN F E, MEYER O E. Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers [M]. Leipzig: B. G. Teubner, 1885: 1798–1895.
9 BIOT M A. Thermoelasticity and irreversible thermodynamics [J]. 1956, 27(3): 240–253.
10 LORD H W, SHULMAN Y A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15 (5): 299- 309
doi: 10.1016/0022-5096(67)90024-5
11 GREEN A E, LINDSAY K A Thermoelasticity[J]. Journal of Elasticity, 1972, 2 (1): 1- 7
doi: 10.1007/BF00045689
12 GREEN A E, NAGHDI P M A re-examination of the basic postulates of thermomechanics[J]. Proceedings: Mathematical and Physical Sciences, 1991, 432 (1885): 171- 194
13 GREEN A E, NAGHDI P M Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31 (3): 189- 208
doi: 10.1007/BF00044969
14 ABOUELREGAL A E Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model[J]. International Journal of Engineering Science, 2011, 49 (8): 781- 791
doi: 10.1016/j.ijengsci.2011.03.007
15 SINHA A N, SINHA S B Reflection of thermoelastic waves at a solid half-space with thermal relaxation[J]. Journal of Physics of the Earth, 1974, 22 (2): 237- 244
doi: 10.4294/jpe1952.22.237
16 SINHA S B, ELSIBAI K A Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times[J]. Journal of Thermal Stresses, 1996, 19 (8): 749- 762
doi: 10.1080/01495739608946205
17 SINHA S B, ELSIBAI K A Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times[J]. Journal of Thermal Stresses, 1997, 20 (2): 129- 145
doi: 10.1080/01495739708956095
18 ABD-ALLA A N, AL-DAWY A A S The reflection phenomena of SV-waves in a generalized thermoelastic medium[J]. International Journal of Mathematics and Mathematical Sciences, 2000, 23 (8): 529- 546
doi: 10.1155/S0161171200004221
19 SHARMA J N, KUMAR V, CHAND D Reflection of generalized thermoelastic waves from the boundary of a half-space[J]. Journal of Thermal Stresses, 2003, 26 (10): 925- 942
doi: 10.1080/01495730306342
20 SINGH B Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion[J]. Journal of Sound and Vibration, 2006, 291 (3/4/5): 764- 778
21 SINGH B Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion[J]. Journal of Earth System Science, 2005, 114 (2): 159- 168
doi: 10.1007/BF02702017
22 KUMAR R, SHARMA J Reflection of plane waves from the boundaries of a micropolar thermoelastic half-space without energy dissipation[J]. International Journal of Applied Mechanics and Engineering, 2005, 10 (4): 631- 645
23 CHAKRABORTY N, SINGH M C Reflection and refraction of a plane thermoelastic wave at a solid–solid interface under perfect boundary condition, in presence of normal initial stress[J]. Applied Mathematical Modelling, 2011, 35 (11): 5286- 5301
doi: 10.1016/j.apm.2011.04.026
24 HOU W, FU L Y, CARCIONE J M, et al Reflection and transmission of inhomogeneous plane waves in thermoelastic media[J]. Frontiers in Earth Science, 2022, 10: 850331
doi: 10.3389/feart.2022.850331
25 王相宝, 赵凡 单相土体与饱和土体地下结构地震反应对比研究[J]. 四川水泥, 2022, (3): 22- 23
WANG Xiangbao, ZHAO Fan Comparative study of seismic response of underground structures in single-phase and saturated soils[J]. Sichuan Cement, 2022, (3): 22- 23
26 杨猛. 地震SV波全反射作用下的场地反应 [D]. 西安: 西安理工大学, 2022: 1–77.
YANG Meng. Site response under seismic SV wave total reflection [D]. Xi’an: Xi’an University of Technology, 2022: 1–77.
27 王进廷, 金峰, 张楚汉 位于弹性半空间上的理想流体层动力反应—平面P波入射[J]. 工程力学, 2003, 20 (6): 12- 17
WANG Jinting, JIN Feng, ZHANG Chuhan Dynamic response of ideal fluid layer overlying elastic half-space due to P-wave incidence[J]. Engineering Mechanics, 2003, 20 (6): 12- 17
doi: 10.3969/j.issn.1000-4750.2003.06.003
28 ZHAO W, CHEN W, YANG D, et al Analytical solution for seismic response of tunnels with composite linings in elastic ground subjected to Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107113
doi: 10.1016/j.soildyn.2021.107113
29 李志远. 复杂层状地基中的波动传播和地下结构地震响应的研究[D]. 大连: 大连理工大学, 2019: 1–211.
LI Zhiyuan. The research of wave propagation and seismic response of underground structures in complex layered soil [D]. Dalian: Dalian University of Technology, 2019: 1–211.
30 BA Z, FU J, LIU Y, et al Scattering of elastic spherical P, SV, and SH waves by three-dimensional hill in a layered half-space[J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106545
doi: 10.1016/j.soildyn.2020.106545
31 董立东. 双层场地在斜入射地震波作用下的地震响应 [D]. 西安: 西安理工大学, 2023: 1–91.
DONG Lidong. Seismic response of a two-layer field under oblique incident seismic waves [D]. Xi’an: Xi’an University of Technology, 2023: 1–91.
32 YANG Y, MA Q Study on seismic ground motion of P-wave incident elastic foundation free field under thermal effect[J]. Journal of Theoretical and Applied Mechanics, 2023, 61 (4): 445- 457
33 LIU H, DAI G, ZHOU F, et al Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium[J]. The European Physical Journal Plus, 2021, 136 (11): 1163
doi: 10.1140/epjp/s13360-021-02144-x
34 侯婉婷, 符力耘, 魏佳, 等 热弹性介质中波传播特征[J]. 地球物理学报, 2021, 64 (4): 1364- 1374
HOU Wanting, FU Liyun, WEI Jia, et al Characteristics of wave propagation in thermoelastic medium[J]. Chinese Journal of Geophysics, 2021, 64 (4): 1364- 1374
doi: 10.6038/cjg2021N0458
35 张宇昊. 基于分布式声场传感的地震勘探仪关键技术研究[D]. 南京: 南京大学, 2020: 1–79.
ZHANG Yuhao. Research on key technologies of seismic exploration instrument based on distributed acoustic sensing [D]. Nanjing: Nanjing University, 2020: 1–79.
36 徐明江, 魏德敏, 何春保 层状非饱和土地基的轴对称稳态动力响应[J]. 岩土力学, 2011, 32 (4): 1113- 1118
XU Mingjiang, WEI Demin, HE Chunbao Axisymmetric steady state dynamic response of layered unsaturated soils[J]. Rock and Soil Mechanics, 2011, 32 (4): 1113- 1118
doi: 10.3969/j.issn.1000-7598.2011.04.027
[1] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[2] 王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.
[3] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[4] 徐军, 李英民, 杨旭尧, 胡晓平. 多点激励下高烈度区接触网系统地震响应分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1575-1582.
[5] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[6] 姚霄雯, 蒋建群. 地震动强度指标与高拱坝响应的相关性[J]. J4, 2014, 48(2): 254-261.
[7] 李斌, 陈安生, 刘红侠, 温才, 魏岚, 唐金龙. 新器件结构SGOI低场迁移率模型及数值分析[J]. J4, 2013, 47(1): 77-82.
[8] 章永乐,蒋建群,刘加进,王振宇. 框架结构地震损伤评估与抗震设计[J]. J4, 2011, 45(7): 1294-1300.
[9] 傅理文, 汪劲丰, 程伟平, 向华伟. 方形混凝土桥墩裂缝成因分析及对策[J]. J4, 2010, 44(9): 1738-1745.
[10] 吴玉华, 楼文娟. 水平随机地震激励下弹性圆拱的半解析法[J]. J4, 2010, 44(1): 156-159+165.
[11] 严蔚 陈伟球 林志华 蔡金标. 基于高频电阻抗信号的结构损伤监测[J]. J4, 2007, 41(1): 6-11.
[12] 谢旭 吴善幸. 考虑支座破坏影响的防止落梁装置地震响应[J]. J4, 2006, 40(12): 2180-2185.
[13] 罗尧治 王荣. 索穹顶结构动力特性及多维多点抗震性能研究[J]. J4, 2005, 39(1): 39-45.