Please wait a minute...
浙江大学学报(工学版)
土木工程     
附加衰减模式及其对场地地震响应影响
黄博,李玲,凌道盛,陈星耀
浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Modes of additional attenuation of Gmax and its influence on seismic site response
HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1115 KB)   HTML
摘要:

收集了各类土体受大振幅振动影响的Gmax试验数据,分析得到强结构性和弱结构性土的不同Gmax附加衰减模式.通过编制可以考虑Gmax附加衰减影响的一维场地地震响应有效应力分析程序,对典型场地地震响应进行分析对比,发现Gmax附加衰减对场地加速度和切应力响应均有较大的影响,且加速场地液化、扩大场地最终液化范围.考察了场地条件和输入波卓越周期的影响,发现Gmax附加衰减对场地地震响应的影响程度随地下水位的下降而增强,随场地土层厚度的增加无明显变化;强结构性土场地受到的影响比弱结构性土场地更大;不同卓越周期输入下均表现出由于Gmax附加衰减加快场地液化的现象.

Abstract:

Two additional attenuation modes of Gmax were proposed based on the collected test data, corresponding to strong and weak structural soils under large amplitude cyclic loading. A refined program of one-dimensional equivalent linearization method was composed based on effective stress principle in order to analyze the influence of additional attenuation of Gmax. Results show that the additional attenuation of Gmax influences the responses of both accelerations and shear stresses.  The additional attenuation of Gmax can speed up the liquefaction of site and expand the final liquefied range. The influences of different site conditions and different input waves on seismic site response were investigated. Results indicate that the influence of the additional attenuation of Gmax on site increases as the underground water level declines, but hasnt apparent change as the thickness of site increases. The influence of the additional attenuation of Gmax on strong structural soil site is greater than that on weak structural soil site. The phenomenon of speeding up the liquefaction of site can be found under different predominant period waves input situations.

出版日期: 2014-08-04
:  TU 443  
基金资助:

国家自然科学基金资助项目(50908207, 51178427,51278451).

通讯作者: 凌道盛, 男, 教授     E-mail: dsling@zju.edu.cn
作者简介: 黄博(1973-), 女, 副教授,从事土动力学和实验土力学研究和教学.E-mail:cehuangbo@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.005Gmax.

HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.005Gmax.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.005Gmax        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1170

[1] HARDIN B O, RICHART F E. Elastic wave velocities in granular soils [J]. Journal of Soil Mechanics and Foundations Division, 1963, 89(1): 33-65.
[2] FINN W D L, BYRNE P M, MARTIN G R. Seismic response and liquefaction of sands [J]. Journal of Geotechnical Engineering Division, 1976, 102(8): 841-856.
[3] 谷川, 蔡袁强, 王军, 等. 循环应力历史对饱和软黏土小应变切变模量的影响[J]. 岩土工程学报, 2012, 34(9): 1654-1660.
GU Chuan, CAI Yuan-qiang, WANG Jun, et al. Effects of loading history on small-strain shear modulus of saturated clays [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660.
[4] WICHTMANN T, TRIANTAFYLLIDIS T H. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part I: cyclic and dynamic torsional prestraining [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(2): 127-147.
[5] WICHTMANN T, TRIANTAFYLLIDIS T H. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part II: cyclic axial preloading [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(11): 789-803.
[6] 姬美秀. 压电陶瓷弯曲元剪切波速测试及饱和海洋软黏土动力特性研究[D]. 杭州: 浙江大学, 2005.
JI Mei-xiu. Study on the shear wave velocity measurement from bender elements and dynamic properties of saturated soft marine clay [D].Hangzhou: Zhejiang University, 2005.
[7] ZHOU Y G, CHEN Y M. Influence of seismic cyclic loading history on small strain shear modulus of saturated sands [J]. Soil Dynamics and Earthquake Engineering, 2005, 25(5): 341-355.
[8] 张钧. 循环应力历史对粉土小应变切变模量的影响[D]. 杭州: 浙江大学, 2006.
ZHANG Jun. Cyclic stress history effects on small strain shear modulus of silt [D]. Hangzhou: Zhejiang University, 2006.
[9] 施明雄. 多向振动下砂土动力特性试验研究[D]. 杭州: 浙江大学, 2008.
SHI Ming-xiong. Sand response to multi-way dynamic loading [D]. Hangzhou: Zhejiang University, 2008.
[10] DRNEVICH V P, RICHART F E. Dynamic prestraining of dry sand [J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(2): 453-467.
[11] LI X S, YANG W L. Effects of vibration history on modulus and damping of dry sand [J]. Journal Geotechnical and Geoenvironmental Engineering, 1998, 124(11): 1071-1081.
[12] 黄博, 殷建华, 陈云敏, 等. 压电陶瓷弯曲元法测试土样弹性切变模量[J]. 振动工程学报, 2001, 14(2): 155-160.
HUANG Bo, YIN Jian-hua, CHEN Yun-min, et al. Measurements of elastic shear modulus Gmax using piezoceramic bender elements [J]. Journal of Vibration Engineering, 2001, 14(2): 155-160.
[13] 凌道盛, 徐兴. 非线性有限元及程序[M]. 杭州: 浙江大学出版社, 2004.
[14] 齐文浩, 薄景山. 土体地震反应等效线性化方法综述[J]. 世界地震工程, 2007, 23(4): 221-226.
QI Wen-hao, BO Jing-shan. Summarization on equivalent linear method of seismic responses for soil layers [J]. World Earthquake Engineering, 2007, 23(4): 221-226.
[15] SEED H B, IDRISS I M. Soil moduli and damping factors for dynamic response analyses [R]. Berkeley: University of California, 1970.
[16] 陈继华, 陈国兴, 史国龙. 深厚软弱场地地震反应特性研究[J]. 防灾减灾学报, 2004, 24(2): 131-138.
CHEN Ji-hua, CHEN Guo-xing, SHI Guo-long. Research on seismic response characteristics of sites with deep and soft soils [J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(2): 131-138.
[17] BARDET J P, ICHII K, LIN C H. EERA: a computer program for equivalent linear earthquake site response analysis of layered soil deposits [R]. Los Angeles : University of Southern California, 2000.
[18] IDRISS I M, SUN J I. SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits [R]. Davis: University of California, 1992.

[1] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[2] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[3] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[4] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[5] 陶燕丽,周建,龚晓南. 电极材料对电渗过程作用机理的试验研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1618-1623.
[6] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[7] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[8] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829.
[9] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[10] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[11] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592.
[12] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163.
[13] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.
[14] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601.
[15] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.