Please wait a minute...
浙江大学学报(工学版)
土木工程     
给水管网中双酚A降解影响因素
王子龙,李聪,任庆亮, 徐卿,刘嘉涵,毛欣炜
浙江大学 土木工程学系,浙江 杭州 310058
Effects of different factors on degradation of BPA in water distribution system
WANG Zi-long, LI Cong, REN Qing-liang, XU-Qing, LIU Jia-han,MAO Xin-wei
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1318 KB)   HTML
摘要:

利用大型给水管网实验平台,研究双酚A(BPA)在不同管材、水力学条件及水质条件下的降解规律.将管网实验结果与BPA和次氯酸钠在烧杯中的反应降解规律进行对比.BPA利用HPLC荧光检测法进行检测,激发波长为225 nm,发射波长为310 nm,结果表明,BPA降解除与次氯酸钠主反应有关外,还受到管壁和主体水中化学物质的影响.余氯质量浓度、pH值、溴离子质量浓度、流速和温度的增加有利于BPA的降解.不同管材对BPA的降解存在影响,BPA的降解速率在不锈钢管中最大,PE管次之,内衬水泥球磨铸铁管中最小.研究结果显示,管壁对BPA降解的贡献率约为10%,主体水中氯化产物的贡献率约为30%(其中最终氯化产物的贡献率为20%,剩余10%由氧自由基等贡献 ).

Abstract:

Degradation of BPA under different conditions including different pipes materials, hydraulic conditions and water quality was analyzed with the pilot-scale water distribution systems (WDS). BPA was detected by HPLC fluorescence. Excitation wavelength is 225 nm, and emission wavelength is 310 nm. Experimental results show that the degradation of BPA in WDS is effected by not only NaClO but also wall of pipes and chemical compounds in bulk water. The increase of mass concentration of free chlorine, pH values, mass concentration of bromide ions, flow velocity and temperature is beneficial to degradation of BPA. Pipe material is another important factor for the degradation of BPA. The degradation rates of BPA follow the order: stainless steel pipe > polyethelene pipe (PE) > ductile iron pipe. Experimental results show that the contribution rates of wall of pipes and chemical compounds of bulk water to the degradation of BPA are 10% and 30%, respectively (including the 10% of intermediate products and the 20% of final chlorinated compounds).

出版日期: 2014-08-04
:  X 5  
基金资助:

长江水环境教育部重点实验室开放课题资助项目(YRWEF201104);国家自然科学基金资助项目(51208455);浙江省自然科学基金资助项目(LY12E08017)

通讯作者: 李聪,女, 副教授     E-mail: congil@zju.edu.cn
作者简介: 王子龙(1988-),男,硕士生,从事水污染控制的研究.E-mail:wfengluanwu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王子龙,李聪,任庆亮, 徐卿,刘嘉涵,毛欣炜. 给水管网中双酚A降解影响因素[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.006.

WANG Zi-long, LI Cong, REN Qing-liang, XU-Qing, LIU Jia-han,MAO Xin-wei. Effects of different factors on degradation of BPA in water distribution system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.006        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1180

[1] AZEVEDO D, LACORTE S, VIANA P, et a1. Occurrence of nonylphenol and bisphenol A in surface water from Portugal [J]. Journal of the Brazilian Chemical Society, 2001, 12(4): 532-537.
[2] BOLZ U, HAGENMAIER H, KORNER W. Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden—Wiirttemberg, South-west Germany [J]. Environment Pollution, 2001, 15(1): 291-301.
[3] HENDRIKS A, MAAS D J ,NOORDSI J , et al. Monitoring response of XAD-concentrated water in the rhine delta: a major part of the toxic compounds remains unidentified [J]. Water Research, 1994, 28(3): 581-598.
[4] 马晓雁, 高乃云, 李青松, 等. 固相萃取-高效液相色谱检测原水中微量内分泌干扰物 [J]. 给水排水, 2006, 32(1): 610.
MA Xiao-yan, GAO Nai-yun, LI Qing-song, et al. SPE-HPLC determination of trace endocrine disrupting chemicals in raw water [J]. Water and Wastewater Engineering, 2006, 32(1): 610.
[5] 董军, 李向丽, 梁锐杰. 珠江口地区水体中双酚A污染及其与环境因子的关系 [J]. 生态农村环境学报, 2009, 25(2): 94-97.
DONG Jun, LI Xiang-li, LIANG Rui-jie. Bisphenol A pollution of surface water and its environmental factors [J]. Journal of Ecology and Rural Environment, 2009, 25(2): 94-97.
[6] 李向丽, 邹世春, 栾天罡, 等. 三种酚类内分泌干扰物在珠江口不同水体中质量浓度分布的研究 [J]. 安全与环境学报, 2010, 10(2): 96-101.
LI Xiang-li, ZOU Shi-chun, LUAN Tian-gang, et al. Distribution of the three phenolic endocrine disrupting chemicals in the water of the Pearl River Estuary, Guangdong [J]. Journal of Safety and Environment, 2010, 10(2): 96-101.
[7] 张海峰, 胡建英, 常红, 等. SPE-LC-MS 法检测杭州地区饮用水水源及自来水中的双酚A [ J ]. 环境化学, 2004, 23(5) : 584-586.
ZHANG Hai-feng, HU Jian-ying, CHANG Hong,et al. Determination of bisphenol A in surface and drinking water in Hangzhou by SPE-LC-MS method [J]. Environmental Chemistry, 2004, 23(5): 584-586.
[8] LI C, LI X, GRAHAM N, et al. The aqueous degradation of bisphenol A and steroid estrogens by ferrate [J]. Water Research, 2008, 42(1/2): 109-120.
[9] LI C, LI X, GRAHAM N. A study of the preparation and reactivity of potassium ferrate [J]. Chemosphere, 2005, 61(4): 537-543.
[10] 汪雪娇, 高乃云, 孙晓峰,等. 次氯酸钠氧化消除水中BPA的影响因素和动力学 [J]. 环境科学, 2007, 28(11): 2544-2549.
WANG Xue-jiao, GAO Nai-yun, SUN Xiao-feng, et al. Influencing factors and kinetics of oxidation of bisphenol A in water with sodium hypochlorite [J]. Environmental Science, 2007, 28(11): 2544-2549.
[11] HU Jian-ying, AIZAWA T, OOKUBO S, et al. Products of aqueous chlorination of bisphenol A and their estrogenic activity [J]. Environment Science and Technology, 2002, 36(9): 1980-1987.
[12] YAMAMOTO T, YASUHARA A. Chlorination of bisphenol A in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds [J]. Chemosphere, 2002, 46(8): 1215-1223.
[13] FUKAZAWA H, WATANABE M, SHIRAISHI F, et al. Formation of chlorinated derivatives of bisphenol A in waste paper recycling plants and their estrogenic activities [J]. Journal of Health Science, 2002, 48(3): 242-249.
[14] 赵艳红, 郭栋生. 黄河水中邻苯二甲酸二丁酯、壬基酚、双酚A含量的现状分析 [J]. 中国环境监测, 2007, 23(5): 19-21.
ZHAO Yan-hong, GUO Dong-sheng. Analysis to the content of di-n-butyl phthalate.nonylphenol,and bisphenol A in the water of Yellow River [J]. Environmental Monitoring in China, 2007, 23(5): 19-21.
[15] 邵晓玲, 马军, 文刚. 松花江流域某自来水厂中内分泌干扰物的调查 [J]. 环境科学, 2008, 29(10): 2723-2728.
SHAO Xiao-ling, MA Jun, WEN Gang. Investigation of endocrine disrupting chemicals in a drinking water work located in Songhua River Basin [J]. Environmental Science, 2008, 29(10): 2723-2728.
[16] 胡建英, 杨敏. 自来水及其水源中的内分泌干扰物质 [J]. 净水技术, 2001, 20(3): 36.
HU Jian-ying, YANG Min. Endocrine disrupting compounds in tap water and raw water [J]. Water Purification Technology, 2001, 20(3): 36.
[17] REBENNE L, GONZALEZ A, OLSON T. Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes [J]. Environment Science and Technology, 1996, 30(7) : 2235-2242.
[18] 胡玲, 高乃云. Fenton试剂降解内分泌干扰物双酚A的研究 [J]. 中国给水排水, 2011, 27(7): 80-86.
HU Ling, GAO Nai-yun. Degradation of bisphenol A in water by Fenton reagent [J]. China Water and Wastewater, 2011, 27(7): 80-86.
[19] 解恒参, 王运全, 邵羽, 等. 自由基对工业化纤废水氧化处理的研究 [J]. 环境科学与管理, 2012, 3(37): 25-30.
XIE Heng-shen, WANG Yun-quan, SHAO Yu, et al. Industrial chemical fiber wastewater treatment by free radical oxidation [J]. Environmental Science and Management, 2012, 3(37): 25-30.

[1] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[2] 周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥. 单分散气溶胶的声波团聚实验[J]. 浙江大学学报(工学版), 2017, 51(2): 358-362.
[3] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[4] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[5] 俞明锋,李晓东,李文维,陈彤,严建华. 新型钒基催化剂催化降解气相二噁英[J]. 浙江大学学报(工学版), 2016, 50(11): 2052-2057.
[6] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[7] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[8] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[9] 何俊昱,肖溪,黄皓旻,施积炎,徐新华. 四岭水库蓝绿藻细胞浓度的多时间尺度分析[J]. 浙江大学学报(工学版), 2016, 50(3): 491-498.
[10] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[11] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[12] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[13] 邱坤赞,耿雪威,蔡宇翔,竺新波,郑成航,高翔. 等离子体协同V2O5 WO3/TiO2催化降解恶臭气体的试验研究[J]. 浙江大学学报(工学版), 2016, 50(1): 63-69.
[14] 鲍强, 周昊, 刘建成, 朱国栋, 时伟, 岑可法.
新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能
[J]. 浙江大学学报(工学版), 2015, 49(10): 1855-1862.
[15] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.