Please wait a minute...
浙江大学学报(工学版)
能源与环境工程     
石墨电极E Fenton法处理罗丹明B废水
邱珊1, 陈聪1, 邓凤霞1, 冀雅婉1, 丁晓2, 马放1
1.哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150000;2.上海城乡建筑设计院有限公司,上海 200000
Rhodamine B wastewater degradation by graphite graphite electro Fenton system
QIU Shan1,2, CHEN Cong1,2, DENG Feng xia1,2, JI Ya wan1,2, DING Xiao3, MA Fang1,2
1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150000,China; 2. Shanghai Chengxiang Architectural Design Institute Limited Company, Shanghai 200000,China
 全文: PDF(1904 KB)   HTML
摘要:

采用电芬顿(Electro Fenton)法处理罗丹明B(RhB)废水,分析石墨电极Electro Fenton体系处理RhB废水的不同影响因素和机制.设计五因素四水平正交实验考察电压、溶液初始pH值、初始Fe2+浓度、极板间距等因素对RhB去除效率的影响.实验结果表明,Electro Fenton降解RhB的最优条件为:电压为2 V、初始pH值为2.5、初始Fe2+浓度为0.1 mmol/L、极板间距为4 cm.在该条件下反应60 min后,RhB降解率最高达到98.59 %.对反应溶液的中间产物进行三维荧光和高效液相色谱质谱(HPLC MS)、紫外分析.结果表明:采用Electro Fenton法处理60 min后,在波长为554 nm处RhB的吸光度为零,但仍存在荧光峰,且TOC去除率为33.3 %,可以判断有一些有荧光的中间产物没有被完全去除.用HPLC MS进行产物分析可知,可能的产物有C26H27O3N2(m/z=415)、C24H23O3N2(m/z=387)等物质.

Abstract:

Electro Fenton with graphite graphite as the electrodes was applied to degrade wastewater containing Rhodamine B (RhB). Both the influencing factors and mechanism were investigated. The effects of various operating factors including potentials, initial solution pH, Fe2+ concentration, electrode plates spacing were systematically investigated in order to obtain the optimized conditions for degradation of RhB under four levels orthogonal test of five factors. The optimum values were as follows: potential2 V, initial pH = 2.5, Fe2+ concentration 0.1 mmol/L, electrode plates spacing 4 cm. The removal rate of RhB could reach to 98.59 % under the optimum conditions. Three dimensional fluorescence, HPLC MS, UV were used to detect intermediate products of RhB during Electro Fenton. Results showed that the absorbance at 554 nm by UV was almost zero, but fluorescence peak still existed. Removal rate of TOC was 33.3 %. Certain intermediate products that have fluorescence did not completely remove. Results from HPLC MS proved that the following intermediate products produced in the Electro Fenton, likeC26H27O3N2(m/z=415)、C24H23O3N2(m/z=387) et al.

出版日期: 2016-04-01
:  X 511  
基金资助:

 牡丹江流域面源综合整治关键技术研究与示范项目(2012ZX07201 002);国家自然科学基金资助项目(51208141).

通讯作者: 马放,男,教授.     E-mail: mafang@ hit.edu.cn
作者简介: 邱珊(1982—),女,副教授,从事环境科学与工程教学的研究.ORCID: 0000 0002 9275 3071. E-mail:qiushan_hit@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.015.

QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/704

[1] NIDHEESH P V, GANDHIMATHI R. Removal of Rhodamine B from aqueous solution using graphite graphite electro Fenton system [J]. Desalination and Water Treatment, 2014, 52(10/11/12): 1872-1877.
[2] WANG K, XU J, HUA X, et al. Highly efficient photodegradation of RhB MO mixture dye wastewater by Ag3PO4 dodecahedrons under acidic condition [J]. Journal of Molecular Catalysis A: Chemical, 2014, 393:302-308.
[3] 黄保军,李建军,屈凌波.罗丹明B荧光光谱机理的研究[J].天津师范大学学报:自然科学版, 2005, 25(3): 8-10.
HUANG Bao jun, LI Jian jun, QU Ling bo. Study on the mechanism of RhB by fluorescence spectroscopy [J]. Journal of Tianjin Normal University: Natural Science Edition, 2005, 25(3): 8-10.
[4] FU H, PAN C, YAO W, et al. Visible light induced degradation of Rhodamine B by Nanosized Bi [J]. The Journal of Physical Chemistry B, 2005, 109(47):22432-22439.
[5] HOIGNE J, BADER H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions [J]. Water Research, 1976, 10(5): 377-386.
[6] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of Halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical based advanced oxidation processes (AOPs) [J]. Environmental Science and Technology, 2014, 48(4): 2344-2351.
[7] BRILLAS E, SIRES I, OTURAN M A. Electro Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry [J]. Chemical Reviews, 2009, 109(12): 6570-6631.
[8] AI Z, GAO Z, ZHANG L, et al. Core shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4 Chlorophenol [J]. Environmental Science and Technology, 2013, 47(10): 5344-5352.
[9] FOURCADE F, DELAWARDE M, GUIHARD L, et al. Electrochemical reduction prior to electro Fenton oxidation of Azo Dyes: impact of the pretreatment on biodegradability [J]. Water Air and Soil Pollution, 2013, 224(1): 1-11.
[10] ROSALES E, PAZOS M, SANROMAN M A. Advances in the electro Fenton process for remediation of recalcitrant organic compounds [J]. Chemical Engineering and Technology, 2012, 35(4): 609-617.
[11] LESTER Y, FERRER I, THURMAN E M, et al. Demonstrating sucralose as a monitor of full scale UV/AOP treatment of trace organic compounds [J]. Journal of Hazardous Materials, 2014, 280(1): 104-110.
[12] PANIZZA M, BARBUCCI A, DELUCCHI M, et al. Electro Fenton degradation of anionic surfactants [J]. Separation and Purification Technology, 2013, 118(23): 394-398.
[13] ELAOUD S C, PANIZZA M, CERISOLA G, et al. Coumaric acid degradation by electro Fenton process [J]. Journal of Electroanalytical Chemistry, 2012, 667(23): 19-23.
[14] ROSALES E, IGLESIAS O, PAZOS M, et al. Decolourisation of dyes under electro Fenton process using Fe alginate gel beads [J]. Journal of Hazardous Materials, 2012, 213(7): 369-377.
[15] DAGHRIR R, DROGUI P. Coupled electrocoagulation: electro Fenton for efficient domestic wastewater treatment [J]. Environmental Chemistry Letters, 2013, 11(2): 151-156.
[16] FERRAG SIAGH F, FOURCADE F, SOUTREL I, et al. Electro Fenton pretreatment for the improvement of tylosin biodegradability [J]. Environmental Science and Pollution Research, 2014, 21(14):8534-8542.
[17] SCIALDONE O, GALIA A, SABATINO S. Electro generation of H2O2 and abatement of organic pollutant in water by an electro Fenton process in a microfluidic reactor [J]. Electrochemistry Communications, 2013, 26(9): 45-47.
[18] 房婷婷,沙鸥.Fe2+ 邻菲罗啉分光光度法测定针剂中头孢他啶[J]. 光谱实验室, 2010(02): 630-632.
FANG Ting ting, SHA Ou. Fe2+ Adjacent phenanthroline spectrophotometric method determination of cephalosporins in injection he organism [J]. Chinese Journal of Spectroscopy Laboratory, 2010(02):630632.
[19] 吕阳艳,曹书勤.表面活性剂增敏邻菲哕啉光度法测铁的研究[J].化学试剂, 2005, 27(2): 101 -102.
LV Yang yan, CAO Shu qin. Surfactant sensitization adjacent Mr Lin spectrophotometry to measure ironresearch [J]. Chemical reagent, 2005, 27(2): 101-102.
[20] ZCAN A,AHIN Y, SAVAKOPARAL A, et al. Carbon sponge as a new cathode material for the electro Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium [J]. Journal of Electroanalytical Chemistry, 2008, 616(1/2): 71-78.
[21] 祁巧艳,孙剑辉.负载型纳米TiO2光催化降解罗丹明B动力学与机理研究[J].水资源保护, 2006, 22(2): 56-58.
QI Qiao yan, SUN Jian hui. Kinetics and mechanisms of photocatalysis degradation of rhodamine B by supported nanometer TiO2 [J]. Water Resourse Protection, 2006, 22(2): 56-58.
[22] NATARAJAN T S, THOMAS M, NATARAJAN K, et al. Study on UV LED/TiO2 process for degradation of Rhodamine B dye [J]. Chemical Engineering Journal, 2011, 169(1/2/3): 126-134.
[23] GANINI D, CANISTRO D, JANG J, et al. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection [J]. Free Radical Biology and Medicine, 2012, 53(7):1514-1521.
[24] LAI B, ZHOU Y, WANG J, et al. Application of excitation and emission matrix fluorescence (EEM) and UV vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro Fenton degradation process [J]. Chemosphere, 2013, 93(11): 2805-2813.
[25] WIETLIK J, SIKORSKA E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone [J]. Water Research, 2004, 38(17): 3791-3799.
[26] BAKER A. Fluorescence excitation emission matrix characterization of some sewage impacted rivers [J]. Environmental Science and Technology, 2001, 35(5): 948-953.
[27] ZHOU M, YU Q, LEI L, et al. Electro Fenton method for the removal of methyl red in an efficient electrochemical system [J]. Separation and Purification Technology, 2007, 57(2): 380-387.
[28] LIN H, ZHANG H, WANG X, et al. Electro Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution [J]. Separation and Purification Technology, 2014, 122(34): 533-540.
[29] XU X C, CHEN J, ZHANG G Q, et al. Homogeneous electro Fenton oxidative degradation of reactive brilliant blue using a graphene doped gas diffusion cathode [J]. International Journal of Electrochemical Science, 2014, 9(2): 569-579.
[30] PANIZZA M, CERISOLA G. Electro Fenton degradation of synthetic dyes [J]. Water Research, 2009,43(2): 339-344.
[31] 申哲民,雷阳明,贾金平,等.PbO2电极氧化有机废水的研究[J]. 高校化学工程学报, 2004, 18(1): 105108.
SHEN Zhe min, LEI Yang ming, JIA Jin ping, et al. Research group about PbO2 electrode oxidation of organic wastewater [J]. Journal of Chemical Engineering of Chinese Universities, 2004, 18(1): 105-108.
[32] COMNINELLIS C  P C. Anodic oxidation of phenol for waste water treatment [J]. Journal of Applied Electrochemistry, 1991, 21(8): 703-708.
[33] GALINDO C, JACQUES P, KALT A. Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74) [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(1): 47-56

[1] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[2] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[3] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[4] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[5] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[6] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[7] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[8] 鲍强, 周昊, 刘建成, 朱国栋, 时伟, 岑可法.
新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能
[J]. 浙江大学学报(工学版), 2015, 49(10): 1855-1862.
[9] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.
[10] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2015, 49(3): 564-570.
[11] 姚水良,赵一帆,张媛,倪洁操,吴祖良. 多层介质阻挡放电处理柴油机尾气颗粒物[J]. 浙江大学学报(工学版), 2015, 49(1): 157-161.
[12] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2014, 48(10): 0-1.
[13] 吴祖良, 谢德援, 陆豪, 姚水良, 高翔2. 介质阻挡放电废气中萘的降解特性和机理[J]. 浙江大学学报(工学版), 2014, 48(6): 1120-1126.
[14] 王磊,王重华,宁平,蒋明,覃扬颂. Ca(OH)2黏土混合物的固磷固硫作用[J]. J4, 2013, 47(5): 874-882.
[15] 汪明喜, 方梦祥, 汪桢, 潘一力, 骆仲泱. 相变吸收剂对CO2吸收与再生特性[J]. J4, 2013, 47(4): 662-668.