交通工程 |
|
|
|
|
基于双重注意力时空图卷积网络的行人轨迹预测 |
向晓倩1( ),陈璟1,2,*( ) |
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122 2. 江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122 |
|
Pedestrian trajectory prediction based on dual-attention spatial-temporal graph convolutional network |
Xiaoqian XIANG1( ),Jing CHEN1,2,*( ) |
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China 2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computing Intelligence, Jiangnan University, Wuxi 214122, China |
1 |
LUO Y, CAI P, BERA A, et al Porca: modeling and planning for autonomous driving among many pedestrians[J]. IEEE Robotics and Automation Letters, 2018, 3 (4): 3418- 3425
doi: 10.1109/LRA.2018.2852793
|
2 |
RUDENKO A, PALMIERI L, HERMAN M, et al Human motion trajectory prediction: a survey[J]. The International Journal of Robotics Research, 2020, 39 (8): 895- 935
doi: 10.1177/0278364920917446
|
3 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE , 2016: 961–971.
|
4 |
XUE H, HUYNH D Q, REYNOLDS M. SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction [C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) . Lake Tahoe: IEEE, 2018: 1186–1194.
|
5 |
ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 12085–12094.
|
6 |
孔玮, 刘云, 李辉, 等 基于图卷积网络的行为识别方法综述[J]. 控制与决策, 2021, 36 (7): 1537- 1546 KONG Wei, LIU Yun, LI Hui, et al A survey of action recognition methods based on graph convolutional network[J]. Control and Decision, 2021, 36 (7): 1537- 1546
|
7 |
MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 14424–14432.
|
8 |
SHI L, WANG L, LONG C, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 8994–9003.
|
9 |
WU Z, PAN S, CHEN F, et al A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (1): 4- 24
|
10 |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: socially acceptable trajectories with generative adversarial networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake: IEEE, 2018: 2255–2264.
|
11 |
BAE I, PARK J H, JEON H G. Non-probability sampling network for stochastic human trajectory prediction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 6477–6487.
|
12 |
MA Y J, INALA J P, JAYARAMAN D, et al. Likelihood-based diverse sampling for trajectory forecasting [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 13279–13288.
|
13 |
VEMULA A, MUELLING K, OH J. Social attention: modeling attention in human crowds [C]// 2018 IEEE International Conference on Robotics and Automation . Brisbane: IEEE, 2018: 4601–4607.
|
14 |
KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al. Social-bigat: multimodal trajectory forecasting using bicycle-gan and graph attention networks [C]// Proceedings of the Annual Conference on Neural Information Processing Systems . Vancouver: NeurIPS, 2019: 1–10.
|
15 |
MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction [C]// Computer Vision–ECCV 2020: 16th European Conference . Glasgow: Springer International Publishing, 2020: 759–776.
|
16 |
LIANG J, JIANG L, NIEBLES J C, et al. Peeking into the future: predicting future person activities and locations in videos [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 5725–5734.
|
17 |
HUANG Y, BI H, LI Z, et al. Stgat: modeling spatial-temporal interactions for human trajectory prediction [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 6272–6281.
|
18 |
YU C, MA X, REN J, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction [C]// Computer Vision-ECCV 2020: 16th European Conference . Glasgow: Springer International Publishing, 2020: 507–523.
|
19 |
YUAN Y, WENG X, OU Y, et al. Agentformer: agent-aware transformers for socio-temporal multi-agent forecasting [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 9813–9823.
|
20 |
SHI L, WANG L, LONG C, et al. Social interpretable tree for pedestrian trajectory prediction [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s.l.]: AAAI, 2022, 36(2): 2235–2243.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|