计算机技术与控制工程 |
|
|
|
|
ASIS模块支持下融合注意力机制KNN的点云实例分割算法 |
项学泳1,2( ),王力1,2,宗文鹏1,2,李广云1,*( ) |
1. 信息工程大学 地理空间信息学院,河南 郑州 450001 2. 地理信息工程国家重点实验室,陕西 西安 710054 |
|
Point cloud instance segmentation based on attention mechanism KNN and ASIS module |
Xue-yong XIANG1,2( ),Li WANG1,2,Wen-peng ZONG1,2,Guang-yun LI1,*( ) |
1. Institute of Geospatial Information, Information Engeering University, Zhengzhou 450001, China 2. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China |
引用本文:
项学泳,王力,宗文鹏,李广云. ASIS模块支持下融合注意力机制KNN的点云实例分割算法[J]. 浙江大学学报(工学版), 2023, 57(5): 875-882.
Xue-yong XIANG,Li WANG,Wen-peng ZONG,Guang-yun LI. Point cloud instance segmentation based on attention mechanism KNN and ASIS module. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 875-882.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.003
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/875
|
1 |
ZHAO N, CHUA T S, LEE G H. Few-shot 3d point cloud semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8873-8882.
|
2 |
WU K L, XU G D, LIU Z L, et al PointCSE: context-sensitive encoders for efficient 3d object detection from point cloud[J]. International Journal of Machine Learning and Cybernetics, 2021, 28 (7): 1- 9
|
3 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn [C]// IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 2961-2969.
|
4 |
姚培军, 尹燕运. 基于三维激光扫描仪和全站仪技术的外立面测量方法[J]. 岩土工程技术, 2022, 36(2): 156-159. YAO Pei-jun, YIN Yan-yun, Facade measurement method based on three-dimensional laser scanner and total station technology [J]. Geotechnical Engineering Technique, 2022, 36(2): 156-159.
|
5 |
王朝莹, 邢帅, 戴莫凡 遥感影像与LiDAR点云多尺度深度特征融合的地物分类方法[J]. 测绘科学技术学报, 2021, 38 (6): 604- 610 WANG Chao-ying, XING Shuai, DAI Mo-fan, et al A method of ground object classification based on multi-scale deep feature fusion of remote sensing image and LiDAR point cloud[J]. Journal of Geomatics Science and Technology, 2021, 38 (6): 604- 610
doi: 10.3969/j.issn.1673-6338.2021.06.009
|
6 |
HOU J, DAI A, NIEßNER M. 3D-SIS: 3d semantic instance segmentation of RGB-d scans [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4421-4430.
|
7 |
YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3d instance segmentation in point cloud [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3947-3956.
|
8 |
WANG W Y, YU R, HUANG Q, et al. SGPN: similarity group proposal network for 3d point cloud instance segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2569-2578.
|
9 |
WANG X L, LIU S, SHEN X Y, et al. Associatively segmenting instances and semantics in point clouds [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4096-4105.
|
10 |
PHAM Q H, NGUYEN T, HUA B S, et al. Jsis3d: joint semantic-instance segmentation of 3d point clouds with multi-task pointwise networks and multi-value conditional random fields [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8827-8836.
|
11 |
LAHOUD J, GHANEM B, POLLEFEYS M, et al. 3D instance segmentation via multi-task metric learning [C]// IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019: 9256-9266.
|
12 |
DU J, CAI G R, WANG Z Y, et al. Convertible sparse convolution for point cloud instace segmentation [C]// IEEE International Geoscience and Remote Sensing Symposium. Brussels: IEEE, 2021: 4111-4114.
|
13 |
PAN R Y, HUANG C M. Accuracy improvement of deep learning 3d point cloud instance segmentation [C]// IEEE International Conference on Consumer Electronics Taiwan. Taiwan: IEEE, 2021: 1-12.
|
14 |
QI R, SU H, MO K, et al. PointNet: deep learning on point sets for 3d classification and segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 652-660.
|
15 |
GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9224-9232.
|
16 |
CHOY C, GWAK J Y, SAVARESE S. 4D spatio-temporal convnets: minkowski convolutional neural networks [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 998-1008.
|
17 |
LIANG Z, YANG M, LI H, et al 3D instance embedding learning with a structure-aware loss function for point cloud segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5 (3): 4915- 4922
|
18 |
HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
19 |
WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 499-515.
|
20 |
DE BRABANDERE B, NEVEN D, VAN GOOL L. Semantic instance segmentation with a discriminative loss function [EB/OL]. [2017-08-08]. https://arxiv.org/abs/1708.02551.
|
21 |
COMANICIU D, MEER P Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (5): 603- 619
|
22 |
WANG Y, SUN Y B, LIU Z W, et al Dynamic graph CNN for learning on point clouds[J]. Acm Transactions on Graphics, 2019, 38 (5): 1- 12
|
23 |
LIU W Y, WEN Y, YU Z, et al. Large-margin softmax loss for convolutional neural networks [C]// International Conference on Machine Learning. New York City: IMLS, 2016: 7-18.
|
24 |
LIN M, CHEN Q, YAN S. Network in network [EB/OL]. [2013-12-16]. https://arxiv.org/abs/1312.4400.
|
25 |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module [C]// European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
26 |
ARMENI I, SENER O, ZAMIR A, et al. 3D semantic parsing of large-scale indoor spaces [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1534-1543.
|
27 |
MENGYE R, RICHARD Z. End-to-end instance segmentation with recurrent attention [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6656-6664.
|
28 |
LIU S R, JIA J, FIDLER S, et al. SGN: sequential grouping networks for instance segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6656-6664.
|
29 |
ZHUO W, SALZMANN M, HE X, et al. Indoor scene parsing with instance segmentation, semantic labeling and support relationship inference [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6656-6664.
|
30 |
MO K, ZHU S, CHANG A X, et al. PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 998-1008.
|
31 |
YANG B, WANG J, CLARK R, ET AL. Learning object bounding boxes for 3d instance segmentation on point clouds [C]// Proceedings of the Advances in Neural Information Processing Systems. Vancouver: NIPS, 2019: 563-575.
|
32 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the Advances in Neural Information Processing Systems. Long Beach: NIPS, 2017: 5099-5108.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|