Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2496-2506    DOI: 10.3785/j.issn.1008-973X.2022.12.019
土木工程、水利工程     
多自由度波浪能装置参数激励运动研究
王冬姣(),陈昌润,刘鲲*(),邱守强
华南理工大学 土木与交通学院,广东 广州 510640
Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter
Dong-jiao WANG(),Chang-run CHEN,Kun LIU*(),Shou-qiang QIU
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
 全文: PDF(1845 KB)   HTML
摘要:

为了研究多自由度波浪能装置的参数激励运动及其对波能俘获能力的影响,利用势流理论建立多自由度轴对称型波浪能装置的频域和时域仿真模型,将垂向动力输出(PTO)机构安装在PTO管内,使浮体在波浪作用下沿管滑动. 纵、横摇铰接轴分别连接PTO机构,PTO阻尼力矩与纵、横摇角速度成正比. 设垂向PTO阻尼力与浮体沿管滑动速度成正比,为了评估参数激励运动,仅在时域模型中将垂向PTO阻尼力分解到垂向和水平方向时保留非线性项. 结果表明,垂向PTO阻尼力是装置产生参数激励运动的主要原因. 产生参数激励运动时,垂向PTO俘获的波浪能降低,参数激励运动的周期范围随波高、垂向PTO阻尼系数的增大而变宽. 随浪工况,垂向和纵摇PTO均连接 PTO阻尼时,若纵摇PTO阻尼力矩系数较小,则参数纵摇和参数横摇同时发生;反之,若纵摇阻尼力矩系数较大,参数纵摇受抑制,但会产生大幅值参数横摇;若要完全抑制装置的参数共振,纵摇和横摇PTO均须设置适当大小的PTO阻尼.

关键词: 多自由度波浪能装置参数横摇参数纵摇参数激励数值模拟    
Abstract:

In order to explore parametrically excitation motions of wave energy converter and its influence on wave energy capture capability, both the frequency domain and time domain simulation models of a multiple degrees of freedom wave energy converter with a vertical axis of symmetry were established based on the potential flow theory. A vertical power take-off (PTO) mechanism was installed inside PTO pipe, allowing a floating buoy to slide along the pipe under wave action. The pitching and rolling articulated shafts are connected with the PTO mechanism respectively, and the corresponding PTO damping torque is proportional to the angular speed of pitching and rolling. Setting damping force of vertical PTO is proportional to the sliding speed of the floating buoy along the PTO pipe, in order to assess the occurrence of large amplitude parametric resonance in the time domain model, when the vertical PTO force is decomposed into vertical and horizontal directions, the nonlinear term is retained, while the nonlinear term was ignored in the frequency domain model. Results show that the parametrically excitation motions are mainly caused by vertical PTO damping force. The wave energy captured by the vertical PTO will be reduced due to occurrence of parametrically excited motions, and a period range of the parametrically excitation motions will become widen with the increase of wave height and vertical PTO damping coefficient. In the following sea waves, both the vertical and pitch PTO were connected with PTO damping, if the damping torque coefficient of pitch PTO is small, then the parametric pitching and rolling occur together. On the contrary, if the pitch PTO damping is large the parametric pitching can be suppressed, but large amplitude parametric rolling will occur. Therefore, in order to completely suppress the parametric resonance of the converter, both pitch and roll PTO mechanisms need to set a certain mount of PTO damping.

Key words: multiple degrees of freedom    wave energy converter    parametric rolling    parametric pitching    parametric excitation    numerical simulation
收稿日期: 2021-12-30 出版日期: 2023-01-03
CLC:  P 743.2  
基金资助: 国家重点研发计划项目(2018YFB1501904);国家自然科学基金资助项目(51809096);广东省自然科学基金资助项目(2021A1515012059)
通讯作者: 刘鲲     E-mail: djwang@scut.edu.cn;liukun86@scut.edu.cn
作者简介: 王冬姣(1963—),女,副教授,从事船舶与海洋工程水动力学教学与研究. orcid.org/0000-0002-4470-3547.E-mail: djwang@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王冬姣
陈昌润
刘鲲
邱守强

引用本文:

王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.

Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.019        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2496

图 1  多自由度轴对称型波浪能装置示意图及坐标系
图 2  浮体模型尺寸及计算模型
图 3  垂向负载阻尼系数对装置运动响应的影响
图 4  垂向负载阻尼系数对装置垂向动力输出机构输出功率及波能俘获宽度比的影响
图 5  波高对装置运动响应的影响
图 6  波高对垂向动力输出机构输出功率及波能俘获宽度比的影响
图 7  
图 7  纵摇负载阻尼系数对装置运动响应的影响
图 8  纵摇负载阻尼系数对垂向动力输出机构输出功率及波能俘获宽度比的影响
图 9  纵摇负载阻尼系数对纵摇动力输出机构的输出功率及波能俘获宽度比的影响
图 10  纵摇负载阻尼系数对总输出功率及总波能俘获宽度比的影响
图 11  参数共振抑制后的总输出功率及总波能俘获宽度比
1 FRANCE W N, LEVADOU M, TREAKLE T W, et al An investigation of head-sea parametric rolling and its influence on container lashing systems[J]. Marine Technology and SNAME News, 2003, 40 (1): 1- 19
doi: 10.5957/mt1.2003.40.1.1
2 ÜÇER E, SÖYLEMEZ M Stochastic rolling motion of ships in following seas[J]. Ocean Engineering, 2011, 38 (8/9): 1001- 1006
doi: 10.1016/j.oceaneng.2011.03.008
3 储纪龙, 吴乘胜, 鲁江, 等 规则迎浪中船舶参数横摇的三维时域预报方法研究[J]. 船舶力学, 2016, 20 (12): 1513- 1522
CHU Ji-long, WU Cheng-sheng, LU Jiang, et al Study on a 3D time-domain method to predict parametric rolling of a ship in regular head seas[J]. Journal of Ship Mechanics, 2016, 20 (12): 1513- 1522
doi: 10.3969/j.issn.1007-7294.2016.12.002
4 MA S, GE W P, ERTEKIN R C, et al Experimental and numerical investigations of ship parametric rolling in regular head waves[J]. China Ocean Engineering, 2018, 32 (4): 431- 442
doi: 10.1007/s13344-018-0045-6
5 李红霞, 鲁江, 顾民, 等 斜浪中参强激励横摇运动的数值模拟与解析分析[J]. 中国造船, 2015, 56 (Suppl.1): 113- 119
LI Hong-xia, LU Jiang, GU Min, et al Numerical and analytical research on forcedly-parametrically excited rolling of ships in oblique seas[J]. Shipbuilding of China, 2015, 56 (Suppl.1): 113- 119
doi: 10.3969/j.issn.1000-4882.2015.z1.016
6 YU L, TAGUCHI K, KENTA A, et al Model experiments on the early detection and rudder stabilization of KCS parametric roll in head waves[J]. Journal of Marine Science of Technology, 2018, 23 (1): 141- 163
doi: 10.1007/s00773-017-0463-9
7 LIU L, CHEN M, WANG X, et al CFD prediction of full-scale ship parametric roll in head wave[J]. Ocean Engineering, 2021, 233: 109180
doi: 10.1016/j.oceaneng.2021.109180
8 GHAMARI I, GRECO M, FALTINSEN O M, et al Numerical and experimental study on the parametric roll resonance for a fishing vessel with and without forward speed[J]. Applied Ocean Research, 2020, 101: 102272
doi: 10.1016/j.apor.2020.102272
9 YANG H Z, XU P J Parametric resonance analyses for spar platform in irregular waves[J]. China Ocean Engineering, 2018, 32 (2): 236- 244
doi: 10.1007/s13344-018-0025-x
10 毛欢, 杨和振 深吃水半潜式平台参数共振研究[J]. 海洋工程, 2016, 34 (1): 18- 24
MAO Huan, YANG He-zhen Study on parametric resonance of a deep draft semi-submersible platform[J]. The Ocean Engineering, 2016, 34 (1): 18- 24
doi: 10.16483/j.issn.1005-9865.2016.01.003
11 YANG M, TENG B, NING D, et al Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain[J]. Ocean Engineering, 2012, 39: 72- 87
doi: 10.1016/j.oceaneng.2011.11.002
12 YANG H Z, XU P J Effect of hull geometry on parametric resonances of spar in irregular waves[J]. Ocean Engineering, 2015, 99: 14- 22
doi: 10.1016/j.oceaneng.2015.03.006
13 JANG H K, KIM M H Mathieu instability of Arctic spar by nonlinear time-domain simulations[J]. Ocean Engineering, 2019, 176: 31- 45
doi: 10.1016/j.oceaneng.2019.02.029
14 ZABIHI M, MAZAHERI S, NAMIN M M Experimental hydrodynamic investigation of a fixed offshore oscillating water column device[J]. Applied Ocean Research, 2019, 85: 20- 33
doi: 10.1016/j.apor.2019.01.036
15 CORREIA DA FONSECA F X, GOMES R P F, HENRIQUES J C C, et al Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: motions and mooring forces[J]. Energy, 2016, 112: 1207- 1218
doi: 10.1016/j.energy.2016.07.007
16 WU B J, CHEN T X, JIANG J Q, et al Economic assessment of wave power boat based on the performance of “Mighty Whale” and BBDB[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 946- 953
doi: 10.1016/j.rser.2017.08.051
17 吴明东, 盛松伟, 张亚群, 等 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9 (1): 42- 47
WU Ming-dong, SHENG Song-wei, ZHANG Ya-qun, et al Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Energy, 2021, 9 (1): 42- 47
18 GOMES R P F, HENRIQUES J C C, GATO L M C, et al Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests[J]. Renewable Energy, 2020, 149: 165- 180
doi: 10.1016/j.renene.2019.11.159
19 GIORGI G, GOMES R P F, HENRIQUES J C C, et al Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: numerical simulations and validation with physical model tests[J]. Applied Energy, 2020, 276: 115421
doi: 10.1016/j.apenergy.2020.115421
20 KALIDOSS S, BANERJEE A Site-specific modeling of self-reacting point absorber in real wave spectrum[J]. Ocean Engineering, 2021, 238: 109736
doi: 10.1016/j.oceaneng.2021.109736
21 LI X F, DILLON M, JIANG B X, et al Analysis and wave tank verification of the performance of point absorber WECs with different configurations[J]. IET Renewable Power Generation, 2021, 15 (14): 3309- 3318
doi: 10.1049/rpg2.12253
22 PASTER J, LIU Y C Power absorption modeling and optimization of a point absorbing wave energy converter using numerical method[J]. Journal of Energy Resources Technology, 2014, 136: 021207
doi: 10.1115/1.4027409
23 TARRANT K, MESKELL C Investigation on parametrically excited motions of point absorbers in regular waves[J]. Ocean Engineering, 2016, 111: 67- 81
doi: 10.1016/j.oceaneng.2015.10.041
24 SHI H, HUANG S, CAO F Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device[J]. Ocean Engineering, 2019, 172: 541- 549
doi: 10.1016/j.oceaneng.2018.12.005
25 BERENJKOOB M N, GHIASI M, SOARES C G Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion[J]. Energy, 2021, 214: 118998
doi: 10.1016/j.energy.2020.118998
[1] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[2] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[3] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[4] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[5] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[6] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[7] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.
[8] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[9] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[10] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[11] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[12] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[13] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[14] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[15] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.