土木工程、水利工程 |
|
|
|
|
多自由度波浪能装置参数激励运动研究 |
王冬姣( ),陈昌润,刘鲲*( ),邱守强 |
华南理工大学 土木与交通学院,广东 广州 510640 |
|
Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter |
Dong-jiao WANG( ),Chang-run CHEN,Kun LIU*( ),Shou-qiang QIU |
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China |
引用本文:
王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.019
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2496
|
1 |
FRANCE W N, LEVADOU M, TREAKLE T W, et al An investigation of head-sea parametric rolling and its influence on container lashing systems[J]. Marine Technology and SNAME News, 2003, 40 (1): 1- 19
doi: 10.5957/mt1.2003.40.1.1
|
2 |
ÜÇER E, SÖYLEMEZ M Stochastic rolling motion of ships in following seas[J]. Ocean Engineering, 2011, 38 (8/9): 1001- 1006
doi: 10.1016/j.oceaneng.2011.03.008
|
3 |
储纪龙, 吴乘胜, 鲁江, 等 规则迎浪中船舶参数横摇的三维时域预报方法研究[J]. 船舶力学, 2016, 20 (12): 1513- 1522 CHU Ji-long, WU Cheng-sheng, LU Jiang, et al Study on a 3D time-domain method to predict parametric rolling of a ship in regular head seas[J]. Journal of Ship Mechanics, 2016, 20 (12): 1513- 1522
doi: 10.3969/j.issn.1007-7294.2016.12.002
|
4 |
MA S, GE W P, ERTEKIN R C, et al Experimental and numerical investigations of ship parametric rolling in regular head waves[J]. China Ocean Engineering, 2018, 32 (4): 431- 442
doi: 10.1007/s13344-018-0045-6
|
5 |
李红霞, 鲁江, 顾民, 等 斜浪中参强激励横摇运动的数值模拟与解析分析[J]. 中国造船, 2015, 56 (Suppl.1): 113- 119 LI Hong-xia, LU Jiang, GU Min, et al Numerical and analytical research on forcedly-parametrically excited rolling of ships in oblique seas[J]. Shipbuilding of China, 2015, 56 (Suppl.1): 113- 119
doi: 10.3969/j.issn.1000-4882.2015.z1.016
|
6 |
YU L, TAGUCHI K, KENTA A, et al Model experiments on the early detection and rudder stabilization of KCS parametric roll in head waves[J]. Journal of Marine Science of Technology, 2018, 23 (1): 141- 163
doi: 10.1007/s00773-017-0463-9
|
7 |
LIU L, CHEN M, WANG X, et al CFD prediction of full-scale ship parametric roll in head wave[J]. Ocean Engineering, 2021, 233: 109180
doi: 10.1016/j.oceaneng.2021.109180
|
8 |
GHAMARI I, GRECO M, FALTINSEN O M, et al Numerical and experimental study on the parametric roll resonance for a fishing vessel with and without forward speed[J]. Applied Ocean Research, 2020, 101: 102272
doi: 10.1016/j.apor.2020.102272
|
9 |
YANG H Z, XU P J Parametric resonance analyses for spar platform in irregular waves[J]. China Ocean Engineering, 2018, 32 (2): 236- 244
doi: 10.1007/s13344-018-0025-x
|
10 |
毛欢, 杨和振 深吃水半潜式平台参数共振研究[J]. 海洋工程, 2016, 34 (1): 18- 24 MAO Huan, YANG He-zhen Study on parametric resonance of a deep draft semi-submersible platform[J]. The Ocean Engineering, 2016, 34 (1): 18- 24
doi: 10.16483/j.issn.1005-9865.2016.01.003
|
11 |
YANG M, TENG B, NING D, et al Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain[J]. Ocean Engineering, 2012, 39: 72- 87
doi: 10.1016/j.oceaneng.2011.11.002
|
12 |
YANG H Z, XU P J Effect of hull geometry on parametric resonances of spar in irregular waves[J]. Ocean Engineering, 2015, 99: 14- 22
doi: 10.1016/j.oceaneng.2015.03.006
|
13 |
JANG H K, KIM M H Mathieu instability of Arctic spar by nonlinear time-domain simulations[J]. Ocean Engineering, 2019, 176: 31- 45
doi: 10.1016/j.oceaneng.2019.02.029
|
14 |
ZABIHI M, MAZAHERI S, NAMIN M M Experimental hydrodynamic investigation of a fixed offshore oscillating water column device[J]. Applied Ocean Research, 2019, 85: 20- 33
doi: 10.1016/j.apor.2019.01.036
|
15 |
CORREIA DA FONSECA F X, GOMES R P F, HENRIQUES J C C, et al Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: motions and mooring forces[J]. Energy, 2016, 112: 1207- 1218
doi: 10.1016/j.energy.2016.07.007
|
16 |
WU B J, CHEN T X, JIANG J Q, et al Economic assessment of wave power boat based on the performance of “Mighty Whale” and BBDB[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 946- 953
doi: 10.1016/j.rser.2017.08.051
|
17 |
吴明东, 盛松伟, 张亚群, 等 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9 (1): 42- 47 WU Ming-dong, SHENG Song-wei, ZHANG Ya-qun, et al Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Energy, 2021, 9 (1): 42- 47
|
18 |
GOMES R P F, HENRIQUES J C C, GATO L M C, et al Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests[J]. Renewable Energy, 2020, 149: 165- 180
doi: 10.1016/j.renene.2019.11.159
|
19 |
GIORGI G, GOMES R P F, HENRIQUES J C C, et al Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: numerical simulations and validation with physical model tests[J]. Applied Energy, 2020, 276: 115421
doi: 10.1016/j.apenergy.2020.115421
|
20 |
KALIDOSS S, BANERJEE A Site-specific modeling of self-reacting point absorber in real wave spectrum[J]. Ocean Engineering, 2021, 238: 109736
doi: 10.1016/j.oceaneng.2021.109736
|
21 |
LI X F, DILLON M, JIANG B X, et al Analysis and wave tank verification of the performance of point absorber WECs with different configurations[J]. IET Renewable Power Generation, 2021, 15 (14): 3309- 3318
doi: 10.1049/rpg2.12253
|
22 |
PASTER J, LIU Y C Power absorption modeling and optimization of a point absorbing wave energy converter using numerical method[J]. Journal of Energy Resources Technology, 2014, 136: 021207
doi: 10.1115/1.4027409
|
23 |
TARRANT K, MESKELL C Investigation on parametrically excited motions of point absorbers in regular waves[J]. Ocean Engineering, 2016, 111: 67- 81
doi: 10.1016/j.oceaneng.2015.10.041
|
24 |
SHI H, HUANG S, CAO F Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device[J]. Ocean Engineering, 2019, 172: 541- 549
doi: 10.1016/j.oceaneng.2018.12.005
|
25 |
BERENJKOOB M N, GHIASI M, SOARES C G Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion[J]. Energy, 2021, 214: 118998
doi: 10.1016/j.energy.2020.118998
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|