计算机技术 |
|
|
|
|
基于电极排列和Transformer的脑电情感识别 |
孟璇( ),张雪英*( ),孙颖,周雅茹 |
太原理工大学 电子信息工程学院,山西 太原 030024 |
|
EEG emotion recognition based on electrode arrangement and Transformer |
Xuan MENG( ),Xueying ZHANG*( ),Ying SUN,Yaru ZHOU |
College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
孟璇,张雪英,孙颖,周雅茹. 基于电极排列和Transformer的脑电情感识别[J]. 浙江大学学报(工学版), 2025, 59(9): 1872-1880.
Xuan MENG,Xueying ZHANG,Ying SUN,Yaru ZHOU. EEG emotion recognition based on electrode arrangement and Transformer. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1872-1880.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1872
|
1 |
LI Y, GUO W, WANG Y Emotion recognition with attention mechanism-guided dual-feature multi-path interaction network[J]. Signal, Image and Video Processing, 2024, 18 (1): 617- 626
|
2 |
RANA A, JHA S. Emotion based hate speech detection using multimodal learning [EB/OL]. (2022-02-13) [2024-9-17]. https://arxiv.org/abs/2202.06218v1.
|
3 |
ZHANG S, ZHAO X, TIAN Q Spontaneous speech emotion recognition using multiscale deep convolutional LSTM[J]. IEEE Transactions on Affective Computing, 2022, 13 (2): 680- 688
doi: 10.1109/TAFFC.2019.2947464
|
4 |
ZHANG S, YANG Y, CHEN C, et al Deep learning-based multimodal emotion recognition from audio, visual, and text modalities: a systematic review of recent advancements and future prospects[J]. Expert Systems with Applications, 2024, 237: 121692
doi: 10.1016/j.eswa.2023.121692
|
5 |
TOISOUL A, KOSSAIFI J, BULAT A, et al Estimation of continuous valence and arousal levels from faces in naturalistic conditions[J]. Nature Machine Intelligence, 2021, 3 (1): 42- 50
doi: 10.1038/s42256-020-00280-0
|
6 |
HAN L, ZHANG X, YIN J EEG emotion recognition based on the TimesNet fusion model[J]. Applied Soft Computing, 2024, 159: 111635
doi: 10.1016/j.asoc.2024.111635
|
7 |
HERRMANN C S, STRÜBER D, HELFRICH R F, et al EEG oscillations: from correlation to causality[J]. International Journal of Psychophysiology, 2016, 103: 12- 21
doi: 10.1016/j.ijpsycho.2015.02.003
|
8 |
WU X, ZHENG W L, LI Z, et al Investigating EEG-based functional connectivity patterns for multimodal emotion recognition[J]. Journal of Neural Engineering, 2022, 19 (1): 016012
doi: 10.1088/1741-2552/ac49a7
|
9 |
WYCZESANY M, CAPOTOSTO P, ZAPPASODI F, et al Hemispheric asymmetries and emotions: evidence from effective connectivity[J]. Neuropsychologia, 2018, 121: 98- 105
doi: 10.1016/j.neuropsychologia.2018.10.007
|
10 |
WANG W Brain network features based on theta-gamma cross-frequency coupling connections in EEG for emotion recognition[J]. Neuroscience Letters, 2021, 761: 136106
doi: 10.1016/j.neulet.2021.136106
|
11 |
CHENG C, ZHANG Y, LIU L, et al Multi-domain encoding of spatiotemporal dynamics in EEG for emotion recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27 (3): 1342- 1353
doi: 10.1109/JBHI.2022.3232497
|
12 |
MOON S, MOON S E, LEE J S. Resting-state fNIRS classification using connectivity and convolutional neural networks [C]// IEEE International Conference on Systems, Man, and Cybernetics. Prague: IEEE, 2022: 1724–1729.
|
13 |
MOON S E, CHEN C J, HSIEH C J, et al Emotional EEG classification using connectivity features and convolutional neural networks[J]. Neural Networks, 2020, 132: 96- 107
doi: 10.1016/j.neunet.2020.08.009
|
14 |
CHEN C J, WANG J L A new approach for functional connectivity via alignment of blood oxygen level-dependent signals[J]. Brain Connectivity, 2019, 9 (6): 464- 474
doi: 10.1089/brain.2018.0636
|
15 |
DOSE H, MØLLER J S, IVERSEN H K, et al An end-to-end deep learning approach to MI-EEG signal classification for BCIs[J]. Expert Systems with Applications, 2018, 114: 532- 542
doi: 10.1016/j.eswa.2018.08.031
|
16 |
GUO J Y, CAI Q, AN J P, et al A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 603: 127700
doi: 10.1016/j.physa.2022.127700
|
17 |
ZHENG W, PAN B A spatiotemporal symmetrical transformer structure for EEG emotion recognition[J]. Biomedical Signal Processing and Control, 2024, 87: 105487
doi: 10.1016/j.bspc.2023.105487
|
18 |
HU X, CHEN Y, YAN J, et al Masked self-supervised pre-training model for EEG-based emotion recognition[J]. Computational Intelligence, 2024, 40 (3): e12659
doi: 10.1111/coin.12659
|
19 |
DEXTER E, ROLLWAGEN-BOLLENS G, BOLLENS S M The trouble with stress: a flexible method for the evaluation of nonmetric multidimensional scaling[J]. Limnology and Oceanography: Methods, 2018, 16 (7): 434- 443
doi: 10.1002/lom3.10257
|
20 |
KULKARNI S, PATIL P R. Analysis of DEAP dataset for emotion recognition [C]// International Conference on Intelligent and Smart Computing in Data Analytics: ISCDA 2020. Singapore: Springer Singapore, 2021: 67–76.
|
21 |
KOBLER R J, HIRAYAMA J I, ZHAO Q, et al. SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG [EB/OL]. (2022-10-12)[2024-09-12]. https://arxiv.org/abs/2206.01323v2.
|
22 |
ZHANG G, ETEMAD A Spatio-temporal EEG representation learning on Riemannian manifold and euclidean space[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8 (2): 1469- 1483
doi: 10.1109/TETCI.2023.3332549
|
23 |
YIN Z, ZHAO M, WANG Y, et al Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 93- 110
doi: 10.1016/j.cmpb.2016.12.005
|
24 |
PIHO L, TJAHJADI T A mutual information based adaptive windowing of informative EEG for emotion recognition[J]. IEEE Transactions on Affective Computing, 2020, 11 (4): 722- 735
doi: 10.1109/TAFFC.2018.2840973
|
25 |
GARG A, KAPOOR A, BEDI A K, et al. Merged LSTM Model for emotion classification using EEG signals [C]// International Conference on Data Science and Engineering. Patna: IEEE, 2019: 139-143.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|