计算机技术与控制工程 |
|
|
|
|
基于知识引导的缺血性脑卒中梗死区分割方法 |
顾正宇1( ),赖菲菲2,耿辰3,王希明4,戴亚康1,3,*( ) |
1. 徐州医科大学 医学影像学院,江苏 徐州 221004 2. 无锡市精神卫生中心 放射科,江苏 无锡,214151 3. 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163 4. 苏州大学附属第一医院 放射科,江苏 苏州 215006 |
|
Knowledge-guided infarct segmentation of ischemic stroke |
Zhengyu GU1( ),Feifei LAI2,Chen GENG3,Ximing WANG4,Yakang DAI1,3,*( ) |
1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China 2. Department of Radiology, Wuxi Mental Health Center, Wuxi 214151, China 3. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China 4. Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China |
引用本文:
顾正宇,赖菲菲,耿辰,王希明,戴亚康. 基于知识引导的缺血性脑卒中梗死区分割方法[J]. 浙江大学学报(工学版), 2025, 59(4): 814-820.
Zhengyu GU,Feifei LAI,Chen GENG,Ximing WANG,Yakang DAI. Knowledge-guided infarct segmentation of ischemic stroke. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 814-820.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.017
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I4/814
|
21 |
YUSHKEVICH P A, GAO Y, GERIG G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images [C]// Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society . Orlando: IEEE, 2016: 3342–3345.
|
22 |
NAJM M, KUANG H, FEDERICO A, et al Automated brain extraction from head CT and CTA images using convex optimization with shape propagation[J]. Computer Methods and Programs in Biomedicine, 2019, 176: 1- 8
doi: 10.1016/j.cmpb.2019.04.030
|
23 |
QIU W, YUAN J, UKWATTA E, et al Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D TRUS and MR images[J]. IEEE Transactions on Medical Imaging, 2014, 33 (4): 947- 960
doi: 10.1109/TMI.2014.2300694
|
24 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Medical Image Computing and Computer-Assisted Intervention . [S. l.]: Springer, 2016: 424–432.
|
1 |
《中国脑卒中防治报告2020》编写组 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19 (2): 136- 144 Report on Stroke Prevention and Treatment in China Writing Group Brief report on stroke prevention and treatment in China, 2020[J]. Chinese Journal of Cerebrovascular Diseases, 2022, 19 (2): 136- 144
|
2 |
朱红霞, 张国柱 半夏白术天麻汤治疗脑卒中后眩晕疗效观察[J]. 安徽中医药大学学报, 2018, 37 (5): 22- 24 ZHU Hongxia, ZHANG Guozhu Clinical effect of Banxia Baizhu Tianma decoction in treatment of post-stroke vertigo[J]. Journal of Anhui University of Chinese Medicine, 2018, 37 (5): 22- 24
doi: 10.3969/j.issn.2095-7246.2018.05.007
|
3 |
GOYAL M, DEMCHUK A M, MENON B K, et al Randomized assessment of rapid endovascular treatment of ischemic stroke[J]. New England Journal of Medicine, 2015, 372 (11): 1019- 1030
doi: 10.1056/NEJMoa1414905
|
4 |
DANKBAAR J W, HORSCH A D, VAN DEN HOVEN A F, et al Prediction of clinical outcome after acute ischemic stroke: the value of repeated noncontrast computed tomography, computed tomographic angiography, and computed tomographic perfusion[J]. Stroke, 2017, 48 (9): 2593- 2596
doi: 10.1161/STROKEAHA.117.017835
|
5 |
王姗, 赵建华 基于CT和MRI的影像组学在缺血性脑卒中的研究进展[J]. CT理论与应用研究(中英文), 2024, 33 (1): 83- 89 WANG Shan, ZHAO Jianhua Research progress in imaging radiomics based on computed tomography and magnetic resonance in ischemic stroke[J]. Computerized Tomography Theory and Applications, 2024, 33 (1): 83- 89
|
6 |
POWERS W J, RABINSTEIN A A, ACKERSON T, et al Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke[J]. Stroke, 2019, 50 (12): e344- e418
|
7 |
REKIK I, ALLASSONNIÈRE S, CARPENTER T K, et al Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal[J]. NeuroImage Clinical, 2012, 1 (1): 164- 178
doi: 10.1016/j.nicl.2012.10.003
|
8 |
KUANG H, MENON B K, QIU W Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke[J]. Medical Physics, 2019, 46 (9): 4037- 4045
doi: 10.1002/mp.13703
|
9 |
KUANG H, NAJM M, MENON B K, et al. Joint segmentation of intracerebral hemorrhage and infarct from non-contrast CT images of post-treatment acute ischemic stroke patients [C]// Medical Image Computing and Computer Assisted Intervention . [S.l.]: Springer, 2018: 681–688.
|
10 |
KUANG H, MENON B K, QIU W. Automated infarct segmentation from follow-up non-contrast CT scans in patients with acute ischemic stroke using dense multi-path contextual generative adversarial network [C]// Medical Image Computing and Computer Assisted Intervention . [S.l.]: Springer, 2019: 856–863.
|
11 |
VAN VOORST H, KONDURI P R, VAN POPPEL L M, et al Unsupervised deep learning for stroke lesion segmentation on follow-up CT based on generative adversarial networks[J]. AJNR American Journal of Neuroradiology, 2022, 43 (8): 1107- 1114
doi: 10.3174/ajnr.A7582
|
12 |
NIE X, LIU X, YANG H, et al Fully automatic identification of post-treatment infarct lesions after endovascular therapy based on non-contrast computed tomography[J]. Neural Computing and Applications, 2023, 35 (30): 22101- 22114
doi: 10.1007/s00521-022-08094-4
|
13 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 936–944.
|
14 |
DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 764–773.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . [S.l.]: Curran Associates Inc., 2017: 6000–6010.
|
16 |
LI S, ZHENG J, LI D Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on multi-scale U-Net deep network model[J]. Computer Methods and Programs in Biomedicine, 2021, 208: 106278
doi: 10.1016/j.cmpb.2021.106278
|
17 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention . [S. l.]: Springer, 2015: 234–241.
|
18 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision – ECCV 2018 . [S.l.]: Springer, 2018: 833–851.
|
19 |
CHEN L, BENTLEY P, MORI K, et al DRINet for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2018, 37 (11): 2453- 2462
doi: 10.1109/TMI.2018.2835303
|
20 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 1–9.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|