| 计算机技术 |
|
|
|
|
| 基于YOLOv8-HSV的隧道螺栓锈蚀检测及等级判定 |
武晓春1( ),张恒骏1,谭磊2 |
1. 兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070 2. 北京市市政工程研究院,北京 100037 |
|
| Corrosion detection and grade determination of tunnel bolts based on YOLOv8-HSV |
Xiaochun WU1( ),Hengjun ZHANG1,Lei TAN2 |
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. Beijing Municipal Engineering Research Institute, Beijing 100037, China |
| 1 |
何川, 封坤, 方勇 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50 (1): 97- 109 HE Chuan, FENG Kun, FANG Yong Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50 (1): 97- 109
|
| 2 |
訾谦. 我国盾构技术驶入数智发展快车道[N]. 光明日报, 2024–11–20(3).
|
| 3 |
沈恺, 张森, 李胜腾, 等 基于摄影测量的盾构隧道轮廓快速检测方法[J]. 铁道学报, 2021, 43 (10): 136- 146 SHEN Kai, ZHANG Sen, LI Shengteng, et al A rapid shield tunnel profile measuring method based on close-range photogrammetry[J]. Journal of the China Railway Society, 2021, 43 (10): 136- 146
|
| 4 |
WANG Y, LIAO W, DONG A, et al High-speed acquisition and intelligent tunnel surface defects recognition[J]. Tunnelling and Underground Space Technology, 2024, 144: 105572
doi: 10.1016/j.tust.2023.105572
|
| 5 |
TAN L, CHEN X, HU X, et al. DMDSNet: a computer vision-based dual multi-task model for tunnel bolt detection and corrosion segmentation [C]// Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems. Bilbao: IEEE, 2023: 4827–4833.
|
| 6 |
宋娟, 贺龙喜, 龙会平 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1161- 1173 SONG Juan, HE Longxi, LONG Huiping Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1161- 1173
|
| 7 |
葛双双, 高玮, 汪义伟, 等 我国交通盾构隧道病害、评价及治理研究综述[J]. 土木工程学报, 2023, 56 (1): 119- 128 GE Shuangshuang, GAO Wei, WANG Yiwei, et al Review on evaluation and treatment of traffic shield tunnel defects in China[J]. China Civil Engineering Journal, 2023, 56 (1): 119- 128
|
| 8 |
NIKRAVESH S M Y, GOUDARZI M A review paper on looseness detection methods in bolted structures[J]. Latin American Journal of Solids and Structures, 2017, 14 (12): 2153- 2176
doi: 10.1590/1679-78254231
|
| 9 |
REDDY M S B, PONNAMMA D, SADASIVUNI K K, et al Sensors in advancing the capabilities of corrosion detection: a review[J]. Sensors and Actuators A: Physical, 2021, 332: 113086
doi: 10.1016/j.sna.2021.113086
|
| 10 |
XU Y, LI D, XIE Q, et al Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement, 2021, 178: 109316
doi: 10.1016/j.measurement.2021.109316
|
| 11 |
许敏娟, 陈莹莹, 刘浩 基于全景图像的隧道渗漏水病害识别方法[J]. 铁道学报, 2023, 45 (8): 184- 192 XU Minjuan, CHEN Yingying, LIU Hao Identification method of tunnel water leakage based on panoramic image[J]. Journal of the China Railway Society, 2023, 45 (8): 184- 192
|
| 12 |
TAN L, TANG T, YUAN D An ensemble learning aided computer vision method with advanced color enhancement for corroded bolt detection in tunnels[J]. Sensors, 2022, 22 (24): 9715
doi: 10.3390/s22249715
|
| 13 |
周中, 闫龙宾, 张俊杰, 等 基于YOLOX-G算法的隧道裂缝实时检测[J]. 铁道科学与工程学报, 2023, 20 (7): 2751- 2762 ZHOU Zhong, YAN Longbin, ZHANG Junjie, et al Real-time detection of tunnel cracks based on YOLOX-G algorithm[J]. Journal of Railway Science and Engineering, 2023, 20 (7): 2751- 2762
|
| 14 |
GU Y, AI Q, XU Z, et al Cost-effective image recognition of water leakage in metro tunnels using self-supervised learning[J]. Automation in Construction, 2024, 167: 105678
doi: 10.1016/j.autcon.2024.105678
|
| 15 |
GUO Z, CHENG X, XIE Q, et al Spatial adaptive improvement detection network for corroded bolt detection in tunnels[J]. Buildings, 2024, 14 (8): 2560
doi: 10.3390/buildings14082560
|
| 16 |
LI X, WANG Q, YANG X, et al Track fastener defect detection model based on improved YOLOv5s[J]. Sensors, 2023, 23 (14): 6457
doi: 10.3390/s23146457
|
| 17 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
| 18 |
JOCHER, G, CHAURASIA, A, QIU, J, et al. YOLO by Ultralytics (Version 8.0. 0) [EB/OL]. [2024–12–03]. https://github.com/ultralytics/ultralytics.
|
| 19 |
WANG X, LIU J Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment[J]. Scientific Reports, 2024, 14: 4261
doi: 10.1038/s41598-024-54540-9
|
| 20 |
LIU L, LI P, WANG D, et al A wind turbine damage detection algorithm designed based on YOLOv8[J]. Applied Soft Computing, 2024, 154: 111364
doi: 10.1016/j.asoc.2024.111364
|
| 21 |
冉庆东, 郑力新 基于改进YOLOv5的锂电池极片缺陷检测方法[J]. 浙江大学学报: 工学版, 2024, 58 (9): 1811- 1821 RAN Qingdong, ZHENG Lixin Defect detection method of lithium battery electrode based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (9): 1811- 1821
|
| 22 |
黄宏伟, 李庆桐 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36 (12): 2861- 2871 HUANG Hongwei, LI Qingtong Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (12): 2861- 2871
|
| 23 |
QIU S, CAI B, WANG W, et al Automated detection of railway defective fasteners based on YOLOv8-FAM and synthetic data using style transfer[J]. Automation in Construction, 2024, 162: 105363
doi: 10.1016/j.autcon.2024.105363
|
| 24 |
YANG J, LI C, DAI X, et al Focal modulation networks[J]. Advances in Neural Information Processing Systems, 2022, 35: 4203- 4217
|
| 25 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778–10787.
|
| 26 |
YU Z, HUANG H, CHEN W, et al YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714
doi: 10.1016/j.patcog.2024.110714
|
| 27 |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [EB/OL]. (2023–04–08)[2024–12–03]. https://arxiv.org/pdf/2301.10051.
|
| 28 |
DE MELO LIMA B P, DE ARAÚJO BARBOSA BORGES L, HIROSE E, et al A lightweight and enhanced model for detecting the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae) based on YOLOv8 for soybean fields[J]. Ecological Informatics, 2024, 80: 102543
doi: 10.1016/j.ecoinf.2024.102543
|
| 29 |
AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection [C]// Proceedings of the IEEE International Conference on Image Processing. Bordeaux: IEEE, 2022: 966–970.
|
| 30 |
TAN L, HU X, TANG T, et al A lightweight metro tunnel water leakage identification algorithm via machine vision[J]. Engineering Failure Analysis, 2023, 150: 107327
doi: 10.1016/j.engfailanal.2023.107327
|
| 31 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
| 32 |
WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want toLearn using programmable gradient information [C]// Computer Vision – ECCV 2024. [S.l.]: Springer, 2025: 1–21.
|
| 33 |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection [EB/OL]. (2024–10–30)[2024–12–03]. https://arxiv.org/pdf/2405.14458.
|
| 34 |
邓伟, 王洪亮 基于级联网络的螺栓锈蚀检测方法研究[J]. 现代电子技术, 2023, 46 (19): 111- 115 DENG Wei, WANG Hongliang Research on bolt corrosion detection method based on cascade network[J]. Modern Electronics Technique, 2023, 46 (19): 111- 115
|
| 35 |
WALDAMICHAEL F G, DEBELEE T G, AYANO Y M Coffee disease detection using a robust HSV color-based segmentation and transfer learning for use on smartphones[J]. International Journal of Intelligent Systems, 2022, 37 (8): 4967- 4993
doi: 10.1002/int.22747
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|