| 计算机技术 |
|
|
|
|
| 基于时空图注意力网络的多变量时序数据异常检测方法 |
肖刚( ),卢大鹏,郑文博,程振波,张元鸣*( ) |
| 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
| Multivariable time series data anomaly detection method based on spatiotemporal graph attention network |
Gang XIAO( ),Dapeng LU,Wenbo ZHENG,Zhenbo CHENG,Yuanming ZHANG*( ) |
| College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
肖刚,卢大鹏,郑文博,程振波,张元鸣. 基于时空图注意力网络的多变量时序数据异常检测方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2134-2143.
Gang XIAO,Dapeng LU,Wenbo ZHENG,Zhenbo CHENG,Yuanming ZHANG. Multivariable time series data anomaly detection method based on spatiotemporal graph attention network. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2134-2143.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.014
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2134
|
| 1 |
丁小欧, 于晟健, 王沐贤, 等 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31 (3): 726- 747 DING Xiaoou, YU Shengjian, WANG Muxian, et al Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31 (3): 726- 747
|
| 2 |
SIMMROSS-WATTENBERG F, ASENSIO-PEREZ J I, CASASECA-DE-LA-HIGUERA P, et al Anomaly detection in network traffic based on statistical inference and \alpha-stable modeling[J]. IEEE Transactions on Dependable and Secure Computing, 2011, 8 (4): 494- 509
doi: 10.1109/TDSC.2011.14
|
| 3 |
张圣林, 李东闻, 孙永谦, 等 面向云数据中心多语法日志通用异常检测机制[J]. 计算机研究与发展, 2020, 57 (4): 778- 790 ZHANG Shenglin, LI Dongwen, SUN Yongqian, et al Unified anomaly detection for syntactically diverse logs in cloud datacenter[J]. Journal of Computer Research and Development, 2020, 57 (4): 778- 790
doi: 10.7544/issn1000-1239.2020.20190875
|
| 4 |
苏卫星, 朱云龙, 刘芳, 等 时间序列异常点及突变点的检测算法[J]. 计算机研究与发展, 2014, 51 (4): 781- 788 SU Weixing, ZHU Yunlong, LIU Fang, et al Outliers and change-points detection algorithm for time series[J]. Journal of Computer Research and Development, 2014, 51 (4): 781- 788
doi: 10.7544/issn1000-1239.2014.20120542
|
| 5 |
HODGE V, AUSTIN J A survey of outlier detection methodologies[J]. Artificial Intelligence Review, 2004, 22 (2): 85- 126
doi: 10.1023/B:AIRE.0000045502.10941.a9
|
| 6 |
AGGARWAL C C, YU P S Outlier detection for high dimensional data[J]. ACM SIGMOD Record, 2001, 30 (2): 37- 46
doi: 10.1145/376284.375668
|
| 7 |
LI W, MAHADEVAN V, VASCONCELOS N Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (1): 18- 32
doi: 10.1109/TPAMI.2013.111
|
| 8 |
MANEVITZ L M, YOUSEF M One-class svms for document classification[J]. Journal of Machine Learning Research, 2002, 2: 139- 154
|
| 9 |
LAPTEV N, AMIZADEH S, FLINT I. Generic and scalable framework for automated time-series anomaly detection [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: ACM, 2015: 1939–1947.
|
| 10 |
SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction [C]// Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. Gold Coast: ACM, 2014: 4–11.
|
| 11 |
ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection [C]// Proceedings of the IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 727–736.
|
| 12 |
BROWN A, TUOR A, HUTCHINSON B, et al. Recurrent neural network attention mechanisms for interpretable system log anomaly detection [C]// Proceedings of the First Workshop on Machine Learning for Computing Systems. Tempe: ACM, 2018: 1–8.
|
| 13 |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2222- 2232
doi: 10.1109/TNNLS.2016.2582924
|
| 14 |
ZHOU H, ZHANG S, PENG J, et al Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 11106- 11115
doi: 10.1609/aaai.v35i12.17325
|
| 15 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017–02–22)[2024–08–23]. https://arxiv.org/pdf/1609.02907.
|
| 16 |
WEI Y, JANG-JACCARD J, XU W, et al LSTM-autoencoder-based anomaly detection for indoor air quality time-series data[J]. IEEE Sensors Journal, 2023, 23 (4): 3787- 3800
doi: 10.1109/JSEN.2022.3230361
|
| 17 |
XU H, PANG G, WANG Y, et al Deep isolation forest for anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (12): 12591- 12604
doi: 10.1109/TKDE.2023.3270293
|
| 18 |
BARRIENTOS-TORRES D, MARTINEZ-RÍOS E A, NAVARRO-TUCH S A, et al Water flow modeling and forecast in a water branch of Mexico City through ARIMA and transfer function models for anomaly detection[J]. Water, 2023, 15 (15): 2792
doi: 10.3390/w15152792
|
| 19 |
SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: ACM, 2019: 2828–2837.
|
| 20 |
霍纬纲, 梁锐, 李永华 基于随机Transformer的多维时间序列异常检测模型[J]. 通信学报, 2023, 44 (2): 94- 103 HUO Weigang, LIANG Rui, LI Yonghua Anomaly detection model for multivariate time series based on stochastic Transformer[J]. Journal on Communications, 2023, 44 (2): 94- 103
doi: 10.11959/j.issn.1000-436x.2023042
|
| 21 |
SHEN L, LI Z, KWOK J T. Timeseries anomaly detection using temporal hierarchical one-class network [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020: 13016–13026.
|
| 22 |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection [C]// International Conference on Learning Representations. Vancouver: [s.n.], 2018: 1–19.
|
| 23 |
ABDULAAL A, LIU Z, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM, 2021: 2485–2494.
|
| 24 |
ZHANG Z, LI W, DING W, et al STAD-GAN: unsupervised anomaly detection on multivariate time series with self-training generative adversarial networks[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17 (5): 1- 18
|
| 25 |
ZHOU B, LIU S, HOOI B, et al. BeatGAN: anomalous rhythm detection using adversarially generated time series [C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. [S.l.]: International Joint Conferences on Artificial Intelligence Organization, 2019: 4433–4439.
|
| 26 |
LIU Y, DING K, LU Q, et al. Towards self-interpretable graph-level anomaly detection [EB/OL]. (2023–10–25)[2024–09–13]. https://arxiv.org/pdf/2310.16520.
|
| 27 |
DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series [C]// The 34th AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2021: 4027–4035.
|
| 28 |
ZHENG Y, KOH H Y, JIN M, et al Correlation-aware spatial-temporal graph learning for multivariate time-series anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (9): 11802- 11816
doi: 10.1109/TNNLS.2023.3325667
|
| 29 |
DING K, SHU K, SHAN X, et al Cross-domain graph anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (6): 2406- 2415
doi: 10.1109/TNNLS.2021.3110982
|
| 30 |
ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network [C]// Proceedings of the IEEE International Conference on Data Mining. Sorrento: IEEE, 2020: 841–850.
|
| 31 |
GUO G, WANG H, BELL D, et al. KNN model-based approach in classification [C]// On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Berlin: Springer, 2003: 986–996.
|
| 32 |
PARK D, HOSHI Y, KEMP C C A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 1544- 1551
doi: 10.1109/LRA.2018.2801475
|
| 33 |
WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis [EB/OL]. (2023–04–12)[2024–08–21]. https://arxiv.org/pdf/2210.02186.
|
| 34 |
MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security [C]// Proceedings of the International Workshop on Cyber-physical Systems for Smart Water Networks. Vienna: IEEE, 2016: 31–36.
|
| 35 |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 387–395.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|