Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1241-1252    DOI: 10.3785/j.issn.1008-973X.2025.06.015
土木工程、交通工程     
黏岩复合地层中盾构掘进引起的超欠挖分析
齐永洁1(),蒋熠诚1,周建1,*(),章伟康2,张迪3,魏纲4
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省交通运输科学研究院,浙江 杭州 310023
3. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
4. 浙大城市学院 土木工程系,浙江 杭州 310015
Analysis of overexcavation and underexcavation caused by shield tunneling in clay and rock composite stratum
Yongjie QI1(),Yicheng JIANG1,Jian ZHOU1,*(),Weikang ZHANG2,Di ZHANG3,Gang WEI4
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China
3. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China
4. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
 全文: PDF(4060 KB)   HTML
摘要:

盾构在上软下硬的黏岩复合地层中掘进时,易引起黏土超挖从而导致土体产生大变形. 为了探究其规律,对传统柔性膜压缩试验进行改进,利用PFC3D离散元软件实现盾构动态开挖和土仓压力平衡模拟. 依托杭州某工程定量分析黏土、硬岩及地层的开挖率,与实测数据进行对比及可靠性验证. 研究盾构掘进速度、刀盘转速、土仓压力、地层软硬比对黏土超欠挖的影响. 研究结果表明:通过数值模拟得到的压缩后土样的破坏规律与试验试样破坏规律相似;3种地层中,稳定后的地层总开挖率分别为1.20、1.18、1.24,与实测值接近,均显示盾构超挖;盾构掘进速度降低、刀盘转速提高、土仓压力减小以及开挖断面内硬岩比例增大均会不同程度导致黏土超挖现象的加剧.

关键词: 盾构隧道黏岩复合地层开挖率超挖量化柔性颗粒膜模拟    
Abstract:

Shield tunneling in a composite formation of upper clay and lower hard rock can easily cause clay over-excavation, leading to significant deformation of the soil. In order to explore its laws, improvements were made to the traditional flexible membrane compression test. The dynamic excavation of shield tunneling and pressure balance simulation of soil silo were achieved using PFC3D discrete element software. Based on an actual engineering case in Hangzhou, the excavation rates of clay, hard rock, and strata were quantitatively analyzed, and the three were compared with the measured data values, completing the reliability verification. Further research was conducted on the effects of shield tunneling speed, cutterhead rotation speed, pressure of soil silo, and hard rock ratio of strata on clay overexcavation and underexcavation. The research results indicated that the failure law of the compressed soil sample obtained by numerical simulation was similar to that of the test sample. The stable values of the total excavation rate in the three strata were 1.20, 1.18, and 1.24, which were close to the measured values and all indicated the overexcavation of shield tunneling. The decrease in shield tunneling speed, the increase in cutterhead speed, the decrease in pressure of soil silo, and the increase in proportion of hard rock in the excavation section would all lead to the intensification of clay overexcavation to varying degrees.

Key words: shield tunnel    clay-rock composite stratum    excavation rate    overexcavation quantification    simulation of flexible granular film
收稿日期: 2024-04-27 出版日期: 2025-05-30
CLC:  TU 43  
基金资助: 国家自然科学基金重点资助项目(51338009);国家自然科学基金面上资助项目(52178399);中国工程院战略研究与咨询资助项目(2025-29-02);中铁第四勘察设计院集团有限公司科研项目(2022K119-W01).
通讯作者: 周建     E-mail: qyjdaydayup@zju.edu.cn;zjelim@zju.edu.cn
作者简介: 齐永洁(1994—),男,博士生,从事盾构隧道施工对周围环境影响的研究. orcid.org/0009-0001-1898-1148. E-mail:qyjdaydayup@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
齐永洁
蒋熠诚
周建
章伟康
张迪
魏纲

引用本文:

齐永洁,蒋熠诚,周建,章伟康,张迪,魏纲. 黏岩复合地层中盾构掘进引起的超欠挖分析[J]. 浙江大学学报(工学版), 2025, 59(6): 1241-1252.

Yongjie QI,Yicheng JIANG,Jian ZHOU,Weikang ZHANG,Di ZHANG,Gang WEI. Analysis of overexcavation and underexcavation caused by shield tunneling in clay and rock composite stratum. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1241-1252.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.015        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1241

图 1  隧道穿越黏岩复合地段的地质剖面
图 2  简化后开挖断面的地层分布图
图 3  颗粒膜受力原理示意图
图 4  加载前后膜颗粒应力矢量图
图 5  取样及制样过程
图 6  黏土三轴压缩试验结果对比
图 7  黏土细观参数标定
细观参数R/mmφρ/(kg·m?3)Ec/MPakn/ksTσ/kPaSσ/kPaμμw$\bar \sigma_{\mathrm{c}}$/ MPa$ \bar c $/MPa$ \bar \phi $/(°)
1粉质黏土8.7~9.70.55190051.50.50.20.50.2
1淤泥质黏土8.7~9.70.48190051.515.012.50.50.2
1粉质黏土8.7~9.70.48190051.56.04.00.50.2
硬岩层8.7~9.70.43000700070.50.341.54040
弹性膜6.16200071.51×102971×102970.7
表 1  细观参数标定结果
图 8  深圳三思万能材料试验机(UTM5605)及岩石试样
图 9  岩石单轴压缩试验结果对比
图 10  岩石细观参数标定
参考文献D/md50/mD/d50xyz维度及土质
Maynar等[28]9.40.910.41.7D1.6D1.7D三维(砂土+黏土)
Karim[29]0.18.7×10?311.52.3D5.5D3D三维(砂土)
6.3×10?316.0
朱伟等[25]60.1540.08.33D5D二维(砂土)
Chen等[30]80.6612.15D3D2.5D/3.0D/4.0D三维(砂土)
0.5414.8
Zhang等[27]0.0750.5625×10?313.35.33D4.84D二维(黏土)
缪林昌等[31]0.13.675×10?327.23.72D4.11D二维(砂土)
王俊等[9]0.80.03225.03D5.5D3.125D三维(砂土)
王振飞等[26]0.123×10?340.04.75D3.75D二维(砂卵石)
龙飞[32]6.40.18434.88.75D6.25D二维(砂土)
江英超[33]0.87×10?3114.32.5D0.75D2.625D砂卵石
表 2  现有研究中模型参数的统计
图 11  刀盘模型图
图 12  盾构开挖模拟离散元模型图
图 13  盾构掘进开挖的模拟步骤图
图 14  土仓压力施加原理及效果图
图 15  各地层开挖率对比
图 16  数值模拟得到的总开挖率曲线与实测数据的对比
图 17  本研究方法与王俊等[9]方法所得结果对比
图 18  黏土开挖率随掘进速度的变化
图 19  不同掘进速度下的离散模型图
图 20  黏土开挖率随刀盘转速的变化
图 21  黏土开挖率随土仓压力大小的变化
图 22  黏土开挖率随地层软硬比的变化
1 张亚洲, 温竹茵, 由广明, 等 上软下硬复合地层盾构隧道设计施工难点及对策研究[J]. 隧道建设(中英文), 2019, 39 (4): 669- 676
ZHANG Yazhou, WEN Zhuyin, YOU Guangming, et al Difficulties and countermeasures in design and construction of shield tunnels in upper-soft and lower-hard stratum[J]. Tunnel Construction, 2019, 39 (4): 669- 676
2 竺维彬, 米晋生, 王晖, 等 复合地层盾构隧道修建技术创新与展望[J]. 现代隧道技术, 2024, 61 (2): 90- 104
ZHU Weibin, MI Jinsheng, WANG Hui, et al Innovation and prospects of shield tunnelling technology in mixed ground[J]. Modern Tunnelling Technology, 2024, 61 (2): 90- 104
3 杨飞, 李嘉, 陈建军 复合地层双线隧道盾构施工地表位移分析[J]. 地基处理, 2022, 4 (5): 430- 436
YANG Fei, LI Jia, CHEN Jianjun Analysis of surface displacement in shield construction of double-line tunnels in composite ground[J]. Journal of Ground Improvement, 2022, 4 (5): 430- 436
4 DING J W, ZHANG S, ZHANG H, et al Journal of performance of constructed facilities[J]. Railway Engineering, 2021, 35 (5): 04021057
5 齐永洁, 朱建才, 周建, 等 土岩复合地层中盾构施工引起的地表位移预测[J]. 岩土工程学报, 2023, 45 (5): 1054- 1062
QI Yongjie, ZHU Jiancai, ZHOU Jian, et al Prediction of surface displacement caused by shield construction in soil-rock composite strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45 (5): 1054- 1062
doi: 10.11779/CJGE20220318
6 QI Y, HU X, ZHOU S, et al Study on the effect of tunneling and secondary grouting on the deformation of existing pipelines in bedrock raised strata[J]. Transportation Geotechnics, 2024, 45: 101218
doi: 10.1016/j.trgeo.2024.101218
7 徐银锋, 杨波, 齐永洁, 等 复合地层中双线隧道引起的土体位移预测[J]. 低温建筑技术, 2024, 46 (3): 125- 130
XU Yinfeng, YANG Bo, QI Yongjie, et al Research on the soil displacement law caused by double line tunnel in upper soft and lower hard strata[J]. Low Temperature Architecture Technology, 2024, 46 (3): 125- 130
8 魏纲, 朱德涵, 王哲, 等 复合成层地层盾构隧道施工引起土体变形计算研究[J]. 岩土工程学报, 2024, 46 (5): 919- 926
WEI Gang, ZHU Dehan, WANG Zhe, et al Calculation of soil deformation caused by construction of shield tunnels in composite layered strata[J]. Chinese Journal of Geotechnical Engineering, 2024, 46 (5): 919- 926
doi: 10.11779/CJGE20230151
9 王俊, 何川, 胡瑞青, 等 土压平衡盾构掘进对上软下硬地层扰动研究[J]. 岩石力学与工程学报, 2017, 36 (4): 953- 963
WANG Jun, HE Chuan, HU Ruiqing, et al Soil disturbance induced by EPB shield tunnelling in upper-soft and lower-hard ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (4): 953- 963
10 GUO S, WANG B, ZHANG P, et al Influence analysis and relationship evolution between construction parameters and ground settlements induced by shield tunneling under soil-rock mixed-face conditions[J]. Tunnelling and Underground Space Technology, 2023, 134: 105020
doi: 10.1016/j.tust.2023.105020
11 刘重庆, 曾亚武, 朱泽奇, 等 厦门地铁上软下硬地层盾构施工引起的地表沉降研究[J]. 铁道科学与工程学报, 2018, 15 (2): 444- 449
LIU Zhongqing, ZENG Yawu, ZHU Zeqi, et al Study on ground surface settlement induced by shield tunneling in upper-soft and lower-hard ground in Xiamen[J]. Journal of Railway Science and Engineering, 2018, 15 (2): 444- 449
doi: 10.3969/j.issn.1672-7029.2018.02.023
12 LV J, LI X, FU H, et al Influence of shield tunnel construction on ground surface settlement under the condition of upper-soft and lower-hard composite strata[J]. Journal of Vibroengineering, 2020, 22 (5): 1126- 1144
doi: 10.21595/jve.2020.20967
13 张婧, 温森, 张国建 复合地层中盾构施工地表沉降影响因素分析[J]. 河南大学学报: 自然科学版, 2023, 53 (5): 605- 614
ZHANG Jing, WEN Sen, ZHANG Guojian Analysis of influence factors of shield tunneling on ground settlement in composite strata[J]. Journal of Henan University: Natural Science, 2023, 53 (5): 605- 614
14 李世豪, 宋战平 地铁隧道施工地表沉降槽宽度系数取值研究[J]. 公路, 2018, 63 (5): 302- 308
LI Shihao, SONG Zhanping Research on the calculation of the settlement width through influenced by shield tunneling[J]. Highway, 2018, 63 (5): 302- 308
15 宋战平, 李世豪, 张学钢, 等 基于修正Peck法的隧道施工全地层变形规律研究[J]. 西安建筑科技大学学报: 自然科学版, 2018, 50 (2): 190- 195
SONG Zhanping, LI Shihao, ZHANG Xuegang, et al Study on strata settlement regular pattern induced by tunnel construction based on Peck formula[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2018, 50 (2): 190- 195
16 顾荣华, 沈卓恒, 王益坚, 等 盾构掘进引起土体扰动的数值模拟与现场验证[J]. 地基处理, 2023, 5 (1): 33- 42
GU Ronghua, SHEN Zhuoheng, WANG Yijian, et al Numerical simulation and field verification of the soil disturbance caused by shield tunneling in structural soft soil[J]. Journal of Ground Improvement, 2023, 5 (1): 33- 42
17 管明哲, 吴叶遥, 董梅, 等. 基于监测数据的杭州粉砂土地层盾构隧道开发风险研究[J]. 地基处理, 2023, 5(5): 398–407.
GUAN Mingzhe, WU Yeyao, DONG Mei, et al. Research on the development risk of silty sand shield tunnel based on monitoring data [J]. Journal of Ground Improvement, 2023, 5(5): 398–407.
18 ANAGNOSTOU G, KOVÁRI K The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9 (2): 165- 174
doi: 10.1016/0886-7798(94)90028-0
19 CIL M B, ALSHIBLI K A 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary[J]. Acta Geotechnica, 2014, 9 (2): 287- 298
doi: 10.1007/s11440-013-0273-0
20 CHEUNG G, O’SULLIVAN C Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations[J]. Particuology, 2008, 6 (6): 483- 500
doi: 10.1016/j.partic.2008.07.018
21 WANG Y H, LEUNG S C A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45 (1): 29- 44
doi: 10.1139/T07-070
22 龚晓南. 土力学 [M]. 北京: 中国建筑工业出版社, 2002: 1–30.
23 曾远, 周健 砂土的细观参数对宏观特性的影响研究[J]. 地下空间与工程学报, 2008, 4 (3): 499- 503
ZENG Yuan, ZHOU Jian Influence of micro parameters of sandy soil on its macro properties[J]. Chinese Journal of Underground Space and Engineering, 2008, 4 (3): 499- 503
doi: 10.3969/j.issn.1673-0836.2008.03.020
24 宁孝梁. 黏性土的细观三轴模拟与微观结构研究 [D]. 杭州: 浙江大学, 2017.
NING Xiaoliang. The meso-simulations of triaxial tests and microstructure study of the cohesive soil [D]. Hangzhou: Zhejiang University, 2017.
25 朱伟, 钟小春, 加瑞 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008, 30 (5): 750- 754
ZHU Wei, ZHONG Xiaochun, JIA Rui Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (5): 750- 754
doi: 10.3321/j.issn:1000-4548.2008.05.021
26 王振飞, 张成平 泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38 (3): 55- 62
WANG Zhenfei, ZHANG Chengping Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 38 (3): 55- 62
doi: 10.3969/j.issn.1001-4632.2017.03.08
27 ZHANG Z X, HU X Y, SCOTT K D A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics, 2011, 38 (1): 94- 104
doi: 10.1016/j.compgeo.2010.10.011
28 MAYNAR M J, RODRÍGUEZ L E Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (10): 1234- 1242
doi: 10.1061/(ASCE)1090-0241(2005)131:10(1234)
29 KARIM A M. Three-dimensional discrete element modeling of tunneling in sand [D]. Edmonton: University of Alberta, 2007.
30 CHEN R P, TANG L J, LING D S, et al Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38 (2): 187- 195
doi: 10.1016/j.compgeo.2010.11.003
31 缪林昌, 王正兴, 石文博 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 2015, 37 (1): 98- 104
MIU Linchang, WANG Zhengxing, SHI Wenbo Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (1): 98- 104
doi: 10.11779/CJGE201501011
32 龙飞 基于PFC的盾构穿越既有隧道稳定性分析[J]. 土工基础, 2020, 34 (5): 587- 592
LONG Fei Stability analysis of shielded tunnel excavation passing through an existing tunnel using particle flow code[J]. Soil Engineering and Foundation, 2020, 34 (5): 587- 592
33 江英超. 盾构掘进对砂卵石地层的扰动机理研究 [D]. 成都: 西南交通大学, 2014.
JIANG Yingchao. Study on the soil disturbance mechanism of shield tunnelling in sandy cobble stratum [D]. Chengdu: Southwest Jiaotong University, 2014.
[1] 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制[J]. 浙江大学学报(工学版), 2024, 58(7): 1427-1435.
[2] 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法[J]. 浙江大学学报(工学版), 2024, 58(3): 557-569.
[3] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[4] 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2476-2488.
[5] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639.
[6] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[7] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125.
[8] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[9] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275.
[10] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(4): 2-3.
[11] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[12] 刘维, 张翔杰, 唐晓武, 朱季, 陈仁朋. 饱和沙土中土压盾构开挖面极限支护力[J]. J4, 2012, 46(4): 665-671.