计算机技术 |
|
|
|
|
多尺度上下文引导特征消除的古塔图像分类 |
孟月波1,2( ),王博1,2,刘光辉1,2 |
1. 西安建筑科技大学 信息与控制工程学院,陕西 西安 710300 2. 建筑机器人陕西省高等学校重点实验室 |
|
Multi-scale context-guided feature elimination for ancient tower image classification |
Yuebo MENG1,2( ),Bo WANG1,2,Guanghui LIU1,2 |
1. College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710300, China 2. Key Laboratory of Construction Robots for Higher Education in Shaanxi Province |
1 |
CAO B, ARAUJO A, SIM J. Unifying deep local and global features for image search [C]// European Conference on Computer Vision . Glasgow: Springer, 2020: 726−743.
|
2 |
DOU Z, CUI H, ZHANG L, et al. Learning global and local consistent representations for unsupervised image retrieval via deep graph diffusion networks [EB/OL]. (2020-06-11)[2023-08-22]. https://arxiv.org/abs/2001.01284.
|
3 |
ZHUANG P, WANG Y, QIAO Y. Learning attentive pairwise interaction for fine-grained classification [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020: 13130−13137.
|
4 |
BEHERA A, WHARTON Z, HEWAGE P R P G, et al. Context-aware attentional pooling for fine-grained visual classification [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2021: 929−937.
|
5 |
HU T, QI H, HUANG Q, et al. See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification [EB/OL]. (2019-03-23)[2023-8-22]. https://arxiv.org/abs/1901.09891.
|
6 |
王波, 黄冕, 刘利军, 等 基于多层聚焦Inception-V3卷积网络的细粒度图像分类[J]. 电子学报, 2022, 50 (1): 72- 78 WANG Bo, HUANG Mian, LIU Lijun, et al Multi-layer focused Inception-V3 models for fine-Grained visual recognition[J]. Acta Electronica Sinica, 2022, 50 (1): 72- 78
|
7 |
DU R, CHANG D, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches [C]// European Conference on Computer Vision . Glasgow: Springer, 2020: 726−743.
|
8 |
SONG J, YANG R. Feature boosting, suppression, and diversification for fine-grained visual classification [C]// 2021 International Joint Conference on Neural Networks . Shenzhen: IEEE, 2021: 1−8.
|
9 |
RAO Y, CHEN G, LU J, et al. Counterfactual attention learning for fine-grained visual categorization and reidentification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 1025−1034.
|
10 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale [C]// Proceedings of the International Conference on Learning Representations . Washington DC: ICLR, 2021: 1−22.
|
11 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . New York: Curran Associates, 2017: 6000−6010.
|
12 |
WANG J, YU X, GAO Y. Feature fusion vision transformer for fine-grained visual categorization [C]// Proceedings of the British Machine Vision Conference . Durham: BMVA, 2021: 685−698.
|
13 |
HE J, CHEN J N, LIU S, et al. Transfg: a transformer architecture for fine-grained recognition [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Vancouver: AAAI, 2022: 852−860.
|
14 |
SUN H, HE X, PENG Y. Sim-trans: structure information modeling transformer for fine-grained visual categorization [C]// Proceedings of the 30th ACM International Conference on Multimedia . Ottawa: ACM, 2022: 5853−5861.
|
15 |
LI S, WANG Z, LIU Z, et al. Efficient multi-order gated aggregation network [EB/OL]. (2023-03-20)[2023-8-22]. https://arxiv.org/abs/2211.03295.
|
16 |
DO T, TRAN H, TJIPUTRA E, et al. Fine-grained visual classification using self assessment classifier [EB/OL]. (2022-05-21)[2023-8-22]. https://arxiv.org/abs/2205.10529.
|
17 |
PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: ACL, 2014: 1532−1543.
|
18 |
KIM J H, JUN J, ZHANG B T. Bilinear attention networks [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . New York: Curran Associates, 2018: 1571−1581.
|
19 |
BERA A, WHARTON Z, LIU Y, et al Sr-gnn: spatial relation-aware graph neural network for fine-grained image categorization[J]. IEEE Transactions on Image Processing, 2022, 31: 6017- 6031
doi: 10.1109/TIP.2022.3205215
|
20 |
ZHU H, KE W, LI D, et al. Dual cross-attention learning for fine-grained visual categorization and object reidentification [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 4692−4702.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|