计算机技术 |
|
|
|
|
基于改进SegFormer的太阳能电池缺陷分割模型 |
罗伟1,2( ),颜作涛1,关佳浩1,韩建1,3 |
1. 东北石油大学 物理与电子工程学院,黑龙江 大庆 163318 2. 黑龙江省高校校企共建测试计量技术及仪器仪表工程研发中心,黑龙江 大庆 163318 3. 东北石油大学三亚海洋油气研究院,海南 三亚 572024 |
|
Solar cell defect segmentation model based on improved SegFormer |
Wei LUO1,2( ),Zuotao YAN1,Jiahao GUAN1,Jian HAN1,3 |
1. School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China 2. Heilongjiang Province University and Enterprise Joint Construction of Testing and Measurement Technology and Instrument Engineering R&D Center, Daqing 163318, China 3. Sanya Marine Oil and Gas Research Institute of Northeast Petroleum University, Sanya 572024, China |
引用本文:
罗伟,颜作涛,关佳浩,韩建. 基于改进SegFormer的太阳能电池缺陷分割模型[J]. 浙江大学学报(工学版), 2024, 58(12): 2459-2468.
Wei LUO,Zuotao YAN,Jiahao GUAN,Jian HAN. Solar cell defect segmentation model based on improved SegFormer. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2459-2468.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.005
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2459
|
1 |
吕玉荣 太阳能电池的发展背景及应用[J]. 化工时刊, 2021, 35 (2): 26- 29 LV Yurong The development background and applications of solar cells[J]. Chemical Industry Times, 2021, 35 (2): 26- 29
|
2 |
BREITENSTEIN O, BAUER J, ALTERMATT P P, et al Influence of defects on solar cell characteristics[J]. Solid State Phenomena, 2010, 156: 1- 10
|
3 |
施光辉, 崔亚楠, 刘小娇, 等 电致发光 (EL) 在光伏电池组件缺陷检测中的应用[J]. 云南师范大学学报: 自然科学版, 2016, 36 (2): 17- 21 SHI Guanghui, CUI Yanan, LIU Xiaojiao, et al Electroluminescent application in defects detection of photovoltaic-module[J]. Journal of Yunnan Normal University: Natural Sciences Edition, 2016, 36 (2): 17- 21
|
4 |
MANSOURI A, ZETTL M, MAYER O, et al. Defect detection in photovoltaic modules using electroluminescence imaging [C]// 27th European Photovoltaic Solar Energy Conference and Exhibition . Frankfurt: PVTECH, 2012, 64617926: 3374-3378.
|
5 |
KANAI A, SUGIYAMA M Emission properties of intrinsic and extrinsic defects in Cu2SnS3 thin films and solar cells[J]. Japanese Journal of Applied Physics, 2020, 60 (1): 015504
|
6 |
徐辉, 祝玉华, 甄彤, 等 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15 (1): 47- 59 XU Hui, ZHU Yuhua, ZHEN Tong, et al Survey of image semantic segmentation methods based on deep neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15 (1): 47- 59
|
7 |
陈海永, 刘新如 交叉门控融合的改进语义分割网络及应用[J]. 重庆理工大学学报 : 自然科学, 2023, 37 (6): 187- 195 CHEN Haiyong, LIU Xinru An improved semantic segmentation network and its application by using cross-gated fusion[J]. Journal of Chongqing University of Technology: Natural Science, 2023, 37 (6): 187- 195
|
8 |
RAHMAN M R U, CHEN H, XI W. U-Net based defects inspection in photovoltaic electroluminecscence images [C]// 2019 IEEE International Conference on Big Knowledge . Changsha: IEEE, 2019: 215–220.
|
9 |
王盛, 吴浩, 彭宁, 等 改进U2-Net的太阳能电池片缺陷分割方法[J]. 国外电子测量技术, 2023, 42 (2): 177- 184 WANG Sheng, WU Hao, PENG Ning, et al Improved U2-Net defect segmentation method for solar cells[J]. Foreign Electronic Measurement Technology, 2023, 42 (2): 177- 184
|
10 |
BALZATEGUI J, ECIOLAZA L, ARANA-AREXOLALEIBA N. Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks [C]// IEEE/SICE International Symposium on System Integration . Kunming: IEEE, 2020: 949–953.
|
11 |
张海波, 蔡磊, 任俊平, 等 基于Transformer的高效自适应语义分割网络[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1205- 1214 ZHANG Haibo, CAI Lei, REN Junping, et al Efficient and adaptive semantic segmentation network based on Transformer[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1205- 1214
|
12 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. (2020-10-22)[2023-11-07]. https://arxiv.org/search/?query=An+image+is+worth+16x16+words%3A+Transformers+for+image+recognition+at+scale&searchtype=all&source=header.
|
13 |
YAMADA M, D'AMARIO V, TAKEMOTO K, et al. Transformer module networks for systematic generalization in visual question answering [EB/OL]. (2022-01-27)[2023-11-07]. https://arxiv.org/abs/2201.11316.
|
14 |
ZHOU B, ZHAO H, PUIG X, et al. Scene parsing through ade20k dataset [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Hawaii: IEEE, 2017: 633–641.
|
15 |
DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition . Tokyo: IEEE, 2009: 248–255.
|
16 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Sanya: IEEE, 2021: 10012–10022.
|
17 |
LIU J, WANG C, ZHA L A middle-level learning feature interaction method with deep learning for multi-feature music genre classification[J]. Electronics, 2021, 10 (18): 2206
doi: 10.3390/electronics10182206
|
18 |
XIE E, WANG W, YU Z, et al SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077- 12090
|
19 |
LIU X, YU H F, DHILLON I, et al. Learning to encode position for transformer with continuous dynamical model [C]// International Conference on Machine Learning . PMLR: [s.n.], 2020: 6327–6335.
|
20 |
BRAUWERS G, FRASINCAR F A general survey on attention mechanisms in deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35 (4): 3279- 3298
|
21 |
LIN W, WU Z, CHEN J, et al. Scale-aware modulation meet transformer [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Vancouver: IEEE, 2023: 6015–6026.
|
22 |
STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: Transformer for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Kuala Lumpur: IEEE, 2021: 7262–7272.
|
23 |
DEITSCH S, CHRISLTEIN V, BERGER S, at el Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455- 468
doi: 10.1016/j.solener.2019.02.067
|
24 |
CHU X, TIAN Z, WANG Y, et al Twins: revisiting the design of spatial attention in vision transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 9355- 9366
|
25 |
STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: Transformer for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Venice: IEEE, 2021: 7262–7272.
|
26 |
LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Paris: IEEE, 2022: 11976–11986.
|
27 |
CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Paris: IEEE, 2022: 1290–1299.
|
28 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 3431–3440.
|
29 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference . Munich: Springer International Publishing, 2015: 234–241.
|
30 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-06-17)[2023-11-07]. https://arxiv.org/abs/1706.05587.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|