Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1753-1760    DOI: 10.3785/j.issn.1008-973X.2011.10.009
自动化技术、信息技术     
基于自动随机游走的乳腺肿块分割算法
曹颖, 郝欣, 朱晓恩, 夏顺仁
浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027
Mammographic mass segmentation algorithm based on
automatic random walks
CAO Ying, HAO Xin, ZHU Xiao-en, XIA Shun-ren
Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对乳腺X线影像肿块分割易受弱边缘和周围组织干扰的问题,提出一种基于自动随机游走的乳腺肿块分割算法.利用二维最大熵阈值法、区域生长及形态学方法自动确定一系列标记点,采用平均边缘梯度评价法选择有效标记点进行随机游走分割以获得初步分割结果,并在此分割基础上进行星芒状结构检测,获得完整的肿块分割边缘.随机选取227例肿块图像进行分割,对分割结果进行特征提取和分类.实验结果表明,该算法克服了半自动随机游走的应用局限性,提高了乳腺肿块的分割精度;与其他分割算法相比,该算法在后续的分类中具有更高的分类精度.

Abstract:

A mammographic mass segmentation algorithm based on automatic random walks algorithm was presented in order to overcome the interference of the weak edge and surrounding tissues on mass segmentation in mammograms. Twodimensional maximum entropy threshold, region growing algorithm and morphological method were used to automatically get a series of labels. Then the evaluation method of average edge gradient was used to select the effective labels for random walks segmentation, and the initial segmentation results were obtained; the spiculation pattern was also detected based on such segmentation results. The complete segmentation contour for mass was achieved. 227 images containing mass were randomly selected for segmentation. Then feature extraction and classification were implemented based on the segmentation results. Experimental results show that the algorithm overcomes the application limitation of semi-automatic random walks algorithm, and improves the accuracy of segmentation. The algorithm achieves higher classification accuracy compared with other segmentation algorithms for mass.

出版日期: 2011-10-01
:  TP 391.41  
基金资助:

国家自然科学基金资助项目(60772092).

通讯作者: 夏顺仁,男,教授.     E-mail: srxia@zju.edu.cn
作者简介: 曹颖(1985—),女,硕士生,从事医学图像处理、计算机辅助医学影像诊断研究.E-mail: caoy08@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.

CAO Ying, HAO Xin, ZHU Xiao-en, XIA Shun-ren. Mammographic mass segmentation algorithm based on
automatic random walks. J4, 2011, 45(10): 1753-1760.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.10.009        https://www.zjujournals.com/eng/CN/Y2011/V45/I10/1753

[1] ETTLIN C. Global breast cancer mortality statistics [J]. CA: A Cancer Journal for Clinicians, 1999, 49(3): 138-144.
[2] MILLER A B. Mammography: reviewing the evidence. epidemiology aspect [J]. Canadian Family Physician, 1993, 39: 85-90.
[3] SMART C R, HENDRICK R E, RUTLEDGE III J H, et al. Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials [J]. Cancer, 1995, 75(7): 1619-1626.
[4] 郝欣,曹颖,夏顺仁.基于医学图像内容检索的计算机辅助乳腺X线影像诊断技术[J].中国生物医学工程学报,2009,28(6): 922-930.
HAO Xin, CAO Ying, XIA Shunren. Computeraided diagnosis technique on mammograms using contentbased medical image retrieval [J]. Chinese Journal of Biomedical Engineering, 2009, 28(6): 922-930.
[5] TANG J S, RANGAYYAN R M, XU J, et al. Computeraided detection and diagnosis of breast cancer with mammography: recent advances [J]. IEEE Transactions on Information on Technology in Biomedicine, 2009, 13(2): 236-251.
[6] 沈晔,夏顺仁,李敏丹. 基于内容的医学图像检索中的相关反馈技术[J].中国生物医学工程学报, 2009,28(1): 128-136.
SHEN Ye,XIA Shunren, LI Mindan. A survey on relevance feedback techniques in content based medical image retrieval [J]. Chinese Journal of Biomedical Engineering, 2009, 28(1): 128-136.
[7] CHENG H D, SHI X J, MIN R, et al. Approaches for automated detection and classification of masses in mammograms [J]. Pattern Recognition, 2006, 39(4): 646-668.
[8] BRZAKOVIC D, LUO X M, BRZAKOVIC P. An approach to automated detection of tumors in mammograms [J]. IEEE Transaction on Medical Imaging, 1990, 9(3): 233-241.
[9] LI L, QIAN W, CLARKE L P, et al. Improving mass detection by adaptive and multiscale processing in digitized mammograms [J]. Proceedings of SPIE, 1999, 3661: 490-498.
[10] LANKTON S, TANNENBAUM A R. Localizing regionbased active contours [J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039.
[11] GRADY L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783.
[12] GRADY L, SCHIWIETZ T, AHARON S, et al. Random walks for interactive organ segmentation in two and three dimensions: Implementation and validation [J]. Medical Image Computing and Computerassisted Intervention, 2005, 3750: 773-780.
[13] JIANG L, SONE E M, XU X Y, et al. Automated detection of breast mass spiculation levels and evaluation of scheme performance [J]. Academic Radiology, 2008, 15(12): 1534-1544.
[14] 李刚.数字图像的模糊增强方法[D].武汉:武汉理工大学,2005: 19-26.
LI Gang. Digital image processing methods based on fuzzy enhancement [D]. Wuhan: Wuhan University of Technology, 2005: 19-26.
[15] 李宏言,盛利元,陈良款,等.基于二维最大熵原理和改进遗传算法的图像阈值分割[J].计算机与现代化, 2007(2): 34-37.
LI Hongyan, SHEN Liyuan, CHEN Liangkuan, et al. Image thresholding segmentation based on 2D maximum entropy principle and improved genetic algorithm [J]. Computer and Modernization, 2007(2): 34-37.
[16] YUAN Y, GIGER M L, LI H, et al. A dualstage method for lesion segmentation on digital mammograms [J]. Medical Physics, 2007, 34(11): 4180-4193.
[17] SAMPAT M P, BOVIK A C, WHITMAN G J, et al. A modelbased framework for the detection of spiculated masses on mammography [J]. Medical Physics, 2008, 35(5): 2110-2123.
[18] DOYLE P, SNELL L. Random walks and electric networks [M]. Washington, D.C.: Mathematical Association of America, 1984: 16-50.
[19] CAO Y, HAO X, ZHU X E, et al. An adaptive region growing algorithm for breast mass in mammograms [J]. Frontiers of Electrical and Electronic Engineering in China, 2010, 5(2): 128-136.
[20] 胡永升.现代乳腺影像诊断学[M].北京:科学出版社,2001: 45-58.
[21] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification [J]. IEEE Transaction on Systems, Man and Cybernetics, 1973, 3(6): 610-622.
[22] MAVROFORAKIS M E, GEORGIOU H V, DIMITROPOULOS N, et al. Mammographic masses characterization based on localized texture and

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[6] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[10] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[11] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[12] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.