Please wait a minute...
J4  2011, Vol. 45 Issue (1): 59-63    DOI: 10.3785/j.issn.1008-973X.2011.01.009
计算机技术﹑电信技术     
鲁棒的PTZ摄像机目标跟踪算法
梁文锋1,2,项志宇1,2
1. 浙江大学 信息与电子工程学系,浙江 杭州 310027; 2. 浙江省综合信息网技术重点实验室,浙江 杭州 310027
Algorithm of robust object tracking using PTZ camera
LIANG Wen-feng1,2, XIANG Zhi-yu1,2
1 Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

 提出基于可旋转、变焦(PTZ)摄像机的目标实时智能跟踪算法.通过检测图像序列的方差,根据噪声和运动干扰的历史数据,建立相应的空间分布模型,实现有选择性的﹑高灵敏度的运动检测和云台控制.根据噪声的分布情况调整判决阈值,为不同区域赋予不同的检测灵敏度,提高了系统的噪声容限.自适应地调整方差的序列长度,实现系统灵敏度的大范围调整,以适应噪声、光照的快速变化和不同数量级别的运动幅度.推导长序列方差的快速算法,给出系统实时工作的例子.实验结果表明,算法工作可靠,响应迅速.

Abstract:

An efficient algorithm which robustly tracked a moving object in real-time using pan/tilt/zoom (PTZ) camera was proposed. Noise and interference were detected and stored in a spatial model after calculating the covariance of image sequence. Highly sensitive and selective motion detection of later frames was achieved by comparing later covariance with the spatial model. The detection threshold of each region was carefully measured to reduce noise and constant interference. The number of frames to calculate covariance automatically changed according to environment such as light, signal to noise ratio (SNR), and speed of the motion. An optimization method to calculate the covariance was proposed. Experimental results show that the algorithm worked robustly in various kinds of environments.

出版日期: 2011-03-03
:  TP 391.41  
基金资助:

浙江省科技计划资助项目(2009C33118).

通讯作者: 项志宇, 男, 副教授.     E-mail: xiangzy@zju.edu.cn
作者简介: 梁文锋(1985-), 男, 广东湛江人, 硕士生, 从事机器视觉研究. E-mail: coffs@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.

LIANG Wen-feng, XIANG Zhi-yu. Algorithm of robust object tracking using PTZ camera. J4, 2011, 45(1): 59-63.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.01.009        http://www.zjujournals.com/eng/CN/Y2011/V45/I1/59

[1]  WU Shimguang, ZHAO Tao, CHRISTOPHER B. Robust pan, tilt and zoom estimation for PTZ camera by using meta data and/or frametoframe correspondences \
[C\]∥The 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006: 1-7.
[2] MURRAY D, BASU A. Active tracking [J]. Intelligent Robots and Systems, 1993, 2(1): 1021-1028.
[3] ALOIMONOS J, TSAKIRIS D. On the mathematics of visual tracking [J]. Image and Vision Computing, 1991, 9(4): 235-251.
[4] BRAY A J. Tracking objects using image disparities [J]. Image and Vision Computing, 1990, 8(1): 4-9.
[5] CHEN Ihsien, WANG Shengjyh. An efficient approach for the calibration of multiple PTZ cameras \
[J\]. Automation Science and Engineering, 2007, 4(2): 286-293.
[6] YING Litian, LU M, HAMPAPUR A. Robust and efficient foreground analysis for realtime video surveillance [C]∥Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 1182-1187.
[7] HU Jwusheng, SU Tzungmin. Robust environmental change detection using PTZ camera via spatialtemporal probabilistic modeling [C]∥ Mechatronics 2005. Taipei: IEEE, 2005: 50-55.
[8] LIEN Chengchang, HSU Shengcheng. The target tracking using the spatialtemporal probability model \
[C\]∥ Nonlinear Signal and Image Processing. \
[S.l.\]:IEEE, 2005: 34.
[9] AZZARI P, DISTEFANO L, BEVILACQUA A. An effective realtime mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera \
[C\]∥ Advanced Video and Signal Based Surveillance. Como: IEEE, 2005: 511.
[10] BEVILACQUA A, AZZARI P. Highquality real time motion detection using PTZ cameras [C]∥ Video and Signal Based Surveillance. Sydney: IEEE, 2006: 23.
[11] NAITO M, MATSUMOTO K, HOASHI K. Camera motion detection using video mosaicing \
[C\]∥ Multimedia and Expo. Toronto: IEEE, 2006: 1741.
\
[12\] MUCCI C, VANZOLINI L, DELEDDA A, et al. Intelligent cameras and embedded reconfigurable computing: a casestudy on motion detection \
[C\]∥ SystemonChip. Tampere: IEEE, 2007: 1.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[6] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[11] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[12] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[13] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[14] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.