Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1761-1765    DOI: 10.3785/j.issn.1008-973X.2011.10.010
自动化技术、信息技术     
集成干扰观测器的BP-PID在炉温控制上的应用
金良1, 王维锐1, 刘哲2, 石浩然1
1. 浙江大学 机械设计研究所,浙江 杭州 310027;2. 浙江大学 自动化研究所,浙江 杭州 310027
Application of BP-PID algorithm based on disturbance observer in
furnace temperature control
JIN Liang1, WANG Wei-rui1, LIU Zhe2, SHI Hao-ran1
1. Institute of Mechanical Design, Zhejiang University, Hangzhou 310027, China;
2. Institute of Automation, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了提高加热炉炉温控制精度,设计集成干扰观测器的BP-PID控制器.通过干扰观测器观测出等效干扰,在BP-PID控制器输入端引入等效的补偿,构成一种新的控制器.该控制器继承了BP-PID控制器的智能性,能够对工况进行学习识别,使输入功率逐渐逼近当前的耗散功率,并在耗散功率附近小幅波动,达到动态平衡状态;同时具有干扰观测器抑制干扰的特性,可以对进料、卸料等干扰进行实时估计和补偿,弥补了单纯BP-PID控制器收敛慢、鲁棒性差的缺陷.仿真和实验结果均表明,该控制器可以自动适应各种工况条件,具有很高的稳态精度,对大范围的负载扰动具有很强的抑制作用.

Abstract:

A disturbance observer based BP-PID controller was designed in order to enhance the control precision of furnace temperature. An equivalent compensation was introduced in the input of the BP-PID controller to form a new controller by determining the equivalent disturbance through the disturbance observer. The controller inherited the capacity of BP-PID controller to recognize the working condition. The input power gradually approached to the current dissipated power and fluctuated around the dissipated power with small scale, and finally reached the state of dynamical equilibrium. The controller was also a characteristic disturbance inhibitor to estimate and compensate the disturbances in the control process such as load in, load out and so on, which make up for the flaw of simple BP-PID controller such as slow convergence and bad robustness. The simulation results accorded with the experimental results. The controller can automatically adapt to each kind of working condition and maintains very high precision at stable state. The controller can strongly inhibit from the large range of payload disturbances.

出版日期: 2011-10-01
:  TP 273  
通讯作者: 王维锐,男,讲师.     E-mail: wwrzju@126.com
作者简介: 金良(1985—),男,硕士生,从事机电一体化及嵌入式系统开发等研究.E-mail: jyly@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

金良, 王维锐, 刘哲, 石浩然. 集成干扰观测器的BP-PID在炉温控制上的应用[J]. J4, 2011, 45(10): 1761-1765.

JIN Liang, WANG Wei-rui, LIU Zhe, SHI Hao-ran. Application of BP-PID algorithm based on disturbance observer in
furnace temperature control. J4, 2011, 45(10): 1761-1765.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.10.010        https://www.zjujournals.com/eng/CN/Y2011/V45/I10/1761

[1] 施慧巍.铜阀锻前加热系统的设计及其温度控制系统的研究[D].杭州:浙江大学,2006: 2-3.
SHI Huiwei. Design of the heater before forging and research on its temperature control system [D]. Hangzhou: Zhejiang University, 2006: 2-3.
[2] MARTINEAU S, BURNHAM K J, HAAS O C L, et al. Fourterm bilinear PID controller applied to an industrial furnace [J]. Control Engineering Practice, 2003, 12(4): 457-464.
[3] RADAKOVIC Z R, MILOSEVIC V M, RADAKOVIC S B. Application of temperature fuzzy controller in an indire/ct resistance furnace [J]. Applied Energy, 2002, 73(2): 167-182.
[4] 周海艳,刘军.电加热炉炉温的Fuzzypid复合控制[J].重庆科技学院学报:自然科学版,2009,11(4): 120-121.
ZHOU Haiyan, LIU Jun. Fuzzypid control of the electric heating furnace temperature [J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2009, 11(4): 120-121.
[5] 石晓瑛.基于神经网络PID炉温控制系统设计[J].武汉工业学院学报,2008,27(1): 43-45.
SHI Xiaoying. A design of furnace temperature control based on neural network PID [J]. Journal of Wuhan Polytechnic University, 2008, 27(1): 43-45.
[6] ERIC B, ANNE R. Good practice for energy efficiency in industry [EB/OL]. [2006-04-29]. http:∥www.leonardoenergy.org/webfm_send/2653.
[7] 刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2006: 162-164, 276-277.
[8] KEMPF C J, KOBAYASHI S. Disturbance observer and feed forward design for a highspeed directdrive positioning table [J]. IEEE Transactions on Control System Technology, 1999, 7(5): 513-527.
[9] 王维锐,潘双夏,王芳,等.磁流变液减振器模拟工况实验台控制策略研究[J].浙江大学学报:工学版,2005,39(12): 1915-1919.
WANG Weirui, PAN Shuangxia, WANG Fang, et al. Research on control strategy for simulation working condition testbed of magnetorheological fluid damper [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(12): 1915-1919.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.