Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1397-1406    DOI: 10.3785/j.issn.1008-973X.2012.08.007
机械工程     
水下运载器多变量鲁棒输出反馈控制方法
朱康武, 顾临怡, 马新军, 胥本涛
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Studies on multivariable robust output feedback control for
underwater vehicles
ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对存在较大参数不确定性和仅具有位置、姿态测量的水下运载器的六自由度位姿控制难题,提出一种基于自适应平滑增益滑模观测器和多变量积分Backstepping控制器的非线性控制方法.解决水下运载器的鲁棒输出反馈控制问题,使用基于Lyapunov稳定性理论的设计方法保证观测器控制器系统的稳定性.设计的自适应平滑增益滑模观测器,克服常规滑模观测器中所存在的高频颤振现象,从而获得较平滑的速度估计值.当存在模型不确定性和有界未知干扰时,可以保证速度估计误差以指数速率收敛至较小的球域内.设计的多变量积分Backstepping控制器,可以保证系统的跟踪误差同样收敛至较小的球域内.以浙江大学正在研制的海王号ROV六自由度控制为研究对象,使用所提出的控制方法与传统PID控制器进行对比仿真研究.仿真结果表明,当存在较大参数不确定性、较强未知外干扰和测量噪声时,所提出的控制方法具有较强的鲁棒性能,可以很好地跟踪参考轨迹,获得较好的动态性能和稳态控制精度.性能明显优于常规PID控制器,并且解决了PID控制器所存在的转艏角设定值不能大于90°的问题.

Abstract:

For the 6DOF (degrees of freedom) position and attitude control of underwater vehicles with large parameter uncertainties and only position and angle measurement, a novel nonlinear control algorithm based on adaptive gain smooth sliding observer and multivariable integrated backstepping controller was designed to realize the robust output feedback control of underwater vehicles. By Lyapunov stability design method, the stability of observercontroller system was guaranteed. The adaptive gain smooth sliding observer eliminates the high frequency switching that usually appeared in traditional sliding observer, and obtains a smooth velocity estimation. And in the presence of model uncertainties and bounded unknown disturbances, the velocity estimation error will converge into a small ball field by exponential speed. The multivariable integrated backstepping controller can also guarantee the tracking error converge into a small ball field. For the 6DOF control of Seaking ROV which is developing in ZHEJIANG university, some comparative simulation results were performed using new proposed controller and traditional PID cotnroller respectively. The simulation results prove that in the presence of parameter uncertainties, unknown disturbances and measurement noise, the new proposed controller has strong robustness, and the underwater vehicle can track the desired trajectory very well with good dynamic performance and steady accuracy at the same time. Its performance is better than PID controller obviously, and the restriction that the set point of heading can not greater than 90 degrees in PID controller has been removed.

出版日期: 2012-09-23
:  TP 273  
基金资助:

国家“863”高技术研究发展计划资助项目(2008AA092301-3;2006AA09Z202);浙江省重大科技专项资助项目(2006C13088).

通讯作者: 顾临怡,男,教授,博导.     E-mail: lygu@zju.edu.cn
作者简介: 朱康武(1983—),男,博士生,主要从事水下运载器非线性鲁棒控制和水下运载器液压伺服系统设计.E-mail:zjuzkw@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.

ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles. J4, 2012, 46(8): 1397-1406.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.08.007        http://www.zjujournals.com/eng/CN/Y2012/V46/I8/1397

[1] 施生达.潜艇操纵性[M].北京:国防工业出版社,1995: 207-229.
[2] YOERGER D R, NEWMAN J B, SLOTINE J. Supervisory control system for the JASON ROV [J]. IEEE Journal of Oceanic Engineering, 1986, 11(3): 392-400.
[3] YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
[4] FENG Z, ALLEN R. Reduced order H∞ control of an autonomous underwater vehicle [J]. Control Engineering Practice, 2004, 15(12): 1511-1520.
[5] KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems [J]. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253.
[6] LI J H, LEE P M. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle [J]. Ocean Engineering, 2005, 32(6): 2165-2181.
[7] 高剑,赵宁宁,徐德民,等.水下航行器轴向运动的自适应积分反演跟踪控制[J].兵工学报, 2008, 29(3): 374-378.
GAO Jian, ZHAO Ningning, XU Dimin, et al. Adaptive integral backstepping surge motion tracking control for an underwater Vehicle \[J\]. Acta Armanentarii, 2008, 29(3): 374-378.
[8] KINSEY J C, EUSTICE R M, WHITCOMB L L. A survey of underwater vehicle navigation: Recent advances and new challenges [C]∥ Proceedings of the 7th IFAC Conference of Manoeuvring and Control of Marine Craft (MCMC). Lisbon, Portugal: IFAC, 2006: 1-12.
[9] FOSSEN T I, GRVLEN A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping [J]. IEEE Transactions on Control Systems Technology, 1998, 6(1): 121-128.
[10] LIU S, WANG D, POH E K. Output feedback control design for station keeping of AUVs under shallow water wave disturbances [J]. International Journal of Robust and Nonlinear Control, 2009, 19 (13): 1447-1470.
[11] REFSNES J E, SRENSEN A J, PETTERSEN K Y. Design of outputfeedback control system for high speed maneuvering of an underwater vehicle [C]∥ Proceedings of the MTS/IEEE Oceans. Washington. DC, USA: IEEE, 2005, 2. 1167-1174.
[12] TURSINI M, PETRELLA R, PARASILITI F. Adaptive slidingmode observer for speedsensorless control of induction motors [J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1380-1386.
[13] CANUDAS W, SLOTINE J J. Sliding observers for robots manipulators [J]. Automatica, 1991, 27(5): 859-864.
[14] FILIPESCU A, DUGARD A, DION L. Adaptive gain sliding observer based sliding controller for uncertain parameters nonlinear systems. Application to flexible joint robots [C]∥ Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003: 3537-3542.
[15] SU Y, MULLER P C, ZHENG C. A simple nonlinear observer for a class of uncertain mechanical systems [J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1340-1345.
[16] FOSSEN T I. Guidance and control of ocean vehicles [M]. New York, John Wiley and Sons, 1998: 18.
[17] 沈永欢.实用数学手册[M].北京:科学出版社,2006: 269.
[18] SLOTINE J, LI W P. Applied nonlinear control [M]. NJ: PranticeHal, 1991: 123-126.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[14] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[15] 邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.