Please wait a minute...
J4  2011, Vol. 45 Issue (12): 2079-2087    DOI: 10.3785/j.issn.1008-973X.2011.12.002
自动化技术     
具有积分环节多变量系统的双层结构预测控制
邹涛, 李海强
浙江工业大学 信息工程学院, 浙江 杭州 310023
Two-layer predictive control of multi-variable system
with integrating element
ZOU Tao, LI Hai-qiang
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF  HTML
摘要:

针对双层结构预测控制面对一阶积分过程时无法形成稳态优化模型的问题,基于一阶积分过程的稳态特性,提出“临界稳态”的概念,给出了“临界稳态”状况下的“点”模型,以及“临界稳态”的成立条件(稳定性条件),由此建立积分过程的稳态优化数学模型.双层结构预测控制分为上层稳态优化和下层动态控制.上层稳态优化通过求解稳态优化数学模型得到最优稳态输出目标,下层动态控制使用基于模型的控制方法实现最优稳态目标的跟踪控制.将稳态优化问题求解过程中划分为两个阶段:可行性阶段与最优化阶段.在可行性阶段针对积分过程稳态优化模型中的稳定性条件给出相应的可行性判定与软约束调整算法,从而确保了最优化阶段解的存在性.仿真中,将所提出的积分型双层结构预测控制算法应用在一个多变量积分过程上.该优化控制系统一方面可以计算出系统的最优稳态输出目标,另一方面实现了对该目标的快速跟踪控制.

Abstract:

Aiming at the problem that the model of steady state optimization cannot be formed for one-order integrating process in twolayer predictive control, the concept of “critical steady state” was proposed and then the “point” model and the establishment conditions of “critical steady state”, i.e. stability condition, were presented. Thus the mathematic optimization model was built based on the steady property of one-order integral process. Two-layer predictive control is divided into upper steady state optimization layer and lower dynamic control layer. The optimal steady output target is obtained by the solution of the model of steady state optimization in the upper layer and also tracked by the model based control in the lower dynamic control layer. The solution process for the optimization problem is divided into two stages: feasibility stage and optimization stage. In the feasibility stage, the feasibility judgment and soft constraint adjustment method are presented for the stability condition of integrating process to guarantee the existence of the solution in the optimization stage. In simulation, the presented integral type twolayer predictive control algorithm is implemented on a multivariable integrating process. The optimal steady state output target can be calculated and also quickly tracked by this optimal control system.

出版日期: 2011-12-01
:  TP 273  
基金资助:

国家自然科学基金资助项目(61074059,60825302);国家“863”高技术研究发展计划资助项目(2009AA04Z138);浙江大学工业控制国家重点实验室开放课题资助项目(ICT1116);浙江省科技厅公益项目(2011c31040).

作者简介: 邹涛(1975—),男,副教授,主要从事模型预测控制的工程化研究.E-mail:tzou@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.

ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element. J4, 2011, 45(12): 2079-2087.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.12.002        https://www.zjujournals.com/eng/CN/Y2011/V45/I12/2079

[1] PANNOCCHIA R, RAWLINGS J B, WRIGHT S J, Fast, largescale model predictive control by partial enumeration \
[J\]. Automatica, 2007, 43 (5): 852-860.
[2] KOUVARITAKIS B, ROSSITER J A, SCHUURMANS J, Efficient robust predictive control \
[J\]. IEEE Transactions on Automatic Control, 2000, 45 (8): 1545-1549.
[3] JOHANSEN T, GRANCHAROVA A, Approximate explicit constrained linear model predictive control via orthogonal search tree \
[J\]. IEEE Transactions on Automatic Control ,2003, 48 (5): 810-815.
[4] SCHMID C, BIEGLER L T, Quadratic programming methods for reduced hessian SQP \
[J\]. Computers and Chemical Engineering,1994, 18 (9): 817-832.
[5] BIEGLER T, Quadratic programming algorithms for largescale model predictive control \
[J\]. Journal of Process Control, 2002, 12 (7): 775-795.
[6] QIN S J, BADGWELL T A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11(7): 733-764.
[7] KASSMANN D E, BADGWELL T A, HAWKINS R B. Robust steadystate target calculation for model predictive control [J]. AICHE, 2000, 46(5): 1007-1024.
[8] RAO C V, RAWLINGS J B. Steady states and constraints in model predictive control [J]. AIChE J, 1999, 45(6): 1266-1278.
[9] NIKANDROV A, SWARTZ C L E. Sensitivity analysis of LPMPC cascade control systems [J]. Journal of Process Control, 2009, 19(1): 16-24.
[10] YING C M, JOSEPH B. Performance and stability analysis of LPMPC and QPMPC cascade control systems [J]. AICeE J, 1999, 45(7): 1521-1533.
[11] SCATTOLINI R. Architectures for distributed and hierarchical model predictive controla review [J]. Journal of Process Control, 2009, 19(5): 723-731.

[12] XU F W, HUANG B, AKANDE S. Performance assessment of model predictive control for variability and constraint tuning [J]. Industrial Engineering Chemical Research, 2007, 46, 1208-1219.
[13] 席裕庚,李慷.工业过程有约束多目标多自由度的可行性分析[J].控制理论与应用,1995,12(5): 590-596.
XI Yugeng, LI Kang. Feasibility analysis of constraint multiobjective multidegreeoffreedom optimization control in industry processes [J]. Control Theory and Applications, 1995, 12(5): 590-596.
[14] 席裕庚,谷寒雨.有约束多目标多自由度优化控制的可行性分析及软约束调整[J].自动化学报,1998,24(6): 726-731.
XI Yugeng, GU Hanyu. Feasibility analysis and soft constraint adjustment of CMMO [J]. ACTA Automatica Sinica, 1998, 24(6): 726-731.
[15] TYLER M, MORARI M. Propositional logic in control and monitoring problems [J]. Automatica, 1999, 35: 565-582.
[16] GUPTA Y P. Control of integrating process using dynamic matrix control [J]. Trans IChemE, 1998, 76(4): 465-470.
[17] 钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2009: 162-165.
[18] 邹涛,丁宝苍,张端.模型预测控制工程应用导论[M].北京:化学工业出版社,2010: 76-114.
[19] EATON J W, RAWLINGS J B. Model predictive control of chemical process[J]. Chemical Engineering Science, 1992, 47(4): 705-720.
[20] 邹涛,刘红波,李少远.锅炉汽包水位非自衡系统的预测控制[J].控制理论与应用,2004,21(3): 386-390.
ZOU Tao, LIU Hongbo, LI Shaoyuan. Dynamic matrix control algorithm on the boiler level integral process [J]. Control Theory and Applications, 2004, 21(3): 386-390.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.